Generating mammalian cells with specific mitochondrial DNA (mtDNA)-nuclear DNA (nDNA) combinations is desirable but difficult to achieve and would be enabling for studies of mitochondrial-nuclear communication and coordination in controlling cell fates and functions. We developed 'MitoPunch', a pressure-driven mitochondrial transfer device, to deliver isolated mitochondria into numerous target mammalian cells simultaneousl. MitoPunch and MitoCeption, a previously described force-based mitochondrial transfer approach, both yield stable isolated mitochondrial recipient (SIMR) cells that permanently retain exogenous mtDNA, whereas coincubation of mitochondria with cells does not yield SIMR cells.
View Article and Find Full Text PDFGenerating mammalian cells with desired mitochondrial DNA (mtDNA) sequences is enabling for studies of mitochondria, disease modeling, and potential regenerative therapies. MitoPunch, a high-throughput mitochondrial transfer device, produces cells with specific mtDNA-nuclear DNA (nDNA) combinations by transferring isolated mitochondria from mouse or human cells into primary or immortal mtDNA-deficient (ρ0) cells. Stable isolated mitochondrial recipient (SIMR) cells isolated in restrictive media permanently retain donor mtDNA and reacquire respiration.
View Article and Find Full Text PDFIn molecular and cellular biological research, cell isolation and sorting are required for accurate investigation of cell populations of specific physical or biological characteristics. By employing unique cell properties to distinguish between heterogeneous cell populations, rapid and accurate sorting with high efficiency is possible. Dielectrophoresis-based cell manipulation has significant promise for separation of cells based on their physical properties and is used in diverse areas ranging from cellular diagnostics to therapeutic applications.
View Article and Find Full Text PDFDeep learning has achieved spectacular performance in image and speech recognition and synthesis. It outperforms other machine learning algorithms in problems where large amounts of data are available. In the area of measurement technology, instruments based on the photonic time stretch have established record real-time measurement throughput in spectroscopy, optical coherence tomography, and imaging flow cytometry.
View Article and Find Full Text PDFThe biology of tumor-derived exosomes (TEX) is only partially understood and much remains to be studied in order to define the effect that the tumor microenvironment or the activation of tumor cells exerts on their composition and functions. Increased expression and activity of toll-like receptor 4 (TLR4) in chronic infectious and inflammatory conditions is related with cancer progression: its activation induces an inflammatory signaling that increases the tumorigenic potential of cancer cells promoting their immune evasion. We investigated the immune modulatory properties of TEX released upon cell TLR4 activation, and we found that, although differences were observed depending on the type of the tumor, the treatment influences TEX composition and boosts their immunosuppressive ability.
View Article and Find Full Text PDFThe predominant mechanism by which adipose mesenchymal stem cells (AMSCs) participate to tissue repair is through a paracrine activity and their communication with the inflammatory microenvironment is essential part of this process. This hypothesis has been strengthened by the recent discovery that stem cells release not only soluble factors but also extracellular vesicles, which elicit similar biological activity to the stem cells themselves. We demonstrated that the treatment with inflammatory cytokines increases the immunosuppressive and anti-inflammatory potential of AMSCs-derived exosomes, which acquire the ability to shift macrophages from M1 to M2 phenotype by shuttling miRNA regulating macrophages polarization.
View Article and Find Full Text PDFLabel-free cell analysis is essential to personalized genomics, cancer diagnostics, and drug development as it avoids adverse effects of staining reagents on cellular viability and cell signaling. However, currently available label-free cell assays mostly rely only on a single feature and lack sufficient differentiation. Also, the sample size analyzed by these assays is limited due to their low throughput.
View Article and Find Full Text PDFAn analogue 2 of Brasilicardin A, 1 (BraA), a potent immunosuppressive and cytotoxic agent, was synthesized in which the natural tricyclic skeleton was replaced with a synthetically more accessible substituted tetrahydronaphthalene core. BraA, this analogue (BraL), and cyclosporine A were tested for their ability to inhibit the proliferation of human T cells upon CD3/CD28 activation. Although BraL did not impact T cell activation over the dose range tested, this study shows the inhibitory activity of BraA on human T cells for the first time.
View Article and Find Full Text PDFFlow cytometry is a powerful tool for cell counting and biomarker detection in biotechnology and medicine especially with regards to blood analysis. Standard flow cytometers perform cell type classification both by estimating size and granularity of cells using forward- and side-scattered light signals and through the collection of emission spectra of fluorescently-labeled cells. However, cell surface labeling as a means of marking cells is often undesirable as many reagents negatively impact cellular viability or provide activating/inhibitory signals, which can alter the behavior of the desired cellular subtypes for downstream applications or analysis.
View Article and Find Full Text PDFDistinct CD4(+) T-cell epitopes within the same protein can be optimally processed and loaded into major histocompatibility complex (MHC) class II molecules in disparate endosomal compartments. The CD1 protein isoforms traffic to these same endosomal compartments as directed by unique cytoplasmic tail sequences, therefore we reasoned that antigen/CD1 chimeras containing the different CD1 cytoplasmic tail sequences could optimally target antigens to the MHC class II antigen presentation pathway. Evaluation of trafficking patterns revealed that all four human CD1-derived targeting sequences delivered antigen to the MHC class II antigen presentation pathway, to early/recycling, early/sorting and late endosomes/lysosomes.
View Article and Find Full Text PDF© LitMetric 2025. All rights reserved.