Publications by authors named "Kayoung Joo"

Layer 2/3 pyramidal neurons (L2/3 PyNs) of the cortex extend their basal dendrites near the soma and as apical dendritic tufts in layer 1, which mainly receive feedforward and feedback inputs, respectively. It is suggested that neuromodulators such as serotonin and acetylcholine may regulate the information flow between brain structures depending on the brain state. However, little is known about the dendritic compartment-specific induction of synaptic transmission in single PyNs.

View Article and Find Full Text PDF

It is known that top-down associative inputs terminate on distal apical dendrites in layer 1 while bottom-up sensory inputs terminate on perisomatic dendrites of layer 2/3 pyramidal neurons (L2/3 PyNs) in primary sensory cortex. Since studies on synaptic transmission in layer 1 are sparse, we investigated the basic properties and cholinergic modulation of synaptic transmission in layer 1 and compared them to those in perisomatic dendrites of L2/3 PyNs of rat primary visual cortex. Using extracellular stimulations of layer 1 and layer 4, we evoked excitatory postsynaptic current/potential in synapses in distal apical dendrites (L1-EPSC/L1-EPSP) and those in perisomatic dendrites (L4-EPSC/L4-EPSP), respectively.

View Article and Find Full Text PDF

Neuromodulatory facilitation of long-term synaptic plasticity is important in learning, memory, and experience-dependent cortical plasticity. Although muscarinic-induced long-term depression (mLTD) in the visual cortex is well known, its cellular mechanisms are not fully understood yet. Since endocannabinoid signaling mediates presynaptic expression of LTD in various brain areas including the primary visual cortex of rats, we investigated the involvement of endocannabinoids in the induction of mLTD in different dendritic compartments of layer 2/3 pyramidal neurons.

View Article and Find Full Text PDF

Serotonin [5-hydroxytryptamine (5-HT)] regulates synaptic plasticity in the visual cortex. Although the effects of 5-HT on plasticity showed huge diversity depending on the ages of animals and species, it has been unclear how 5-HT can show such diverse effects. In the rat visual cortex, 5-HT suppressed long-term potentiation (LTP) at 5 weeks but enhanced LTP at 8 weeks.

View Article and Find Full Text PDF

In the visual cortex, synaptic plasticity is very high during the early developmental stage known as the critical period and declines with development after the critical period. Changes in the properties of N-methyl-D-aspartate receptor (NMDAR) and γ-aminobutyric acid type A receptor (GABAA R) have been suggested to underlie the changes in the characteristics of plasticity. However, it is largely unknown how the changes in the two receptors interact to regulate synaptic plasticity.

View Article and Find Full Text PDF

Phasic and tonic γ-aminobutyric acidA (GABAA) receptor-mediated inhibition critically regulate neuronal information processing. As these two inhibitory modalities have distinctive features in their receptor composition, subcellular localization of receptors, and the timing of receptor activation, it has been thought that they might exert distinct roles, if not completely separable, in the regulation of neuronal function. Inhibition should be maintained and regulated depending on changes in network activity, since maintenance of excitation-inhibition balance is essential for proper functioning of the nervous system.

View Article and Find Full Text PDF