A combination of three-dimensional (3D) cell culturing and non-viral gene transfection is promising in improving outcomes of cell transplantation therapy. Herein, gene transfection profiles in 3D cell culture were compared between plasmid DNA (pDNA) and messenger RNA (mRNA) introduction, using mesenchymal stem cell (MSC) 3D spheroids. Green fluorescence protein (GFP) mRNA induced GFP protein expression in 77% of the cells in the spheroids, whereas only 34% of the cells became GFP positive following pDNA introduction.
View Article and Find Full Text PDFCell transplantation is promising for regenerative medicine. A combination of a three-dimensional spheroid culture system with gene transfection was developed to enhance the therapeutic effects of mesenchymal stem cell (MSC) transplantation. The spheroid cell culture system is based on micropatterned substrates composed of a regular array of 100-μm-diameter cell-adhesion areas coated with a temperature-responsive polymer, poly (N-isopropylacrylamide-co-methacrylic acid), which allows for spheroid detachment by simply cooling the plates.
View Article and Find Full Text PDFMessenger (m)RNA vaccines require a safe and potent immunostimulatory adjuvant. In this study, we introduced immunostimulatory properties directly into mRNA molecules by hybridizing them with complementary RNA to create highly immunogenic double stranded (ds)RNAs. These dsRNA formulations, comprised entirely of RNA, are expected to be safe and highly efficient due to antigen expression and immunostimulation occurring simultaneously in the same antigen presenting cells.
View Article and Find Full Text PDFTo improve the therapeutic effectiveness of cell transplantation, a transplantation system of genetically modified, injectable spheroids was developed. The cell spheroids are prepared in a culture system on micropatterned plates coated with a thermosensitive polymer. A number of spheroids are formed on the plates, corresponding to the cell adhesion areas of 100 µm diameter that are regularly arrayed in a two-dimensional manner, surrounded by non-adhesive areas that are coated by a polyethylene glycol (PEG) matrix.
View Article and Find Full Text PDF