Publications by authors named "Kayoko Taniguchi"

Tumor necrosis factor alpha (TNF-α), a central mediator of the inflammatory response, is released from basophilic cells and other cells in response to a variety of proinflammatory stimuli. Vialinin A is a potent inhibitor of TNF-α production and is released from RBL-2H3 cells. Ubiquitin-specific peptidase 5 (USP5), a deubiquitinating enzyme, was identified as a target molecule of vialinin A and its enzymatic activity was inhibited by vialinin A.

View Article and Find Full Text PDF

Vialinin A, a small compound isolated from the Chinese mushroom Thelephora vialis, exhibits more effective anti-inflammatory activity than the widely used immunosuppressive drug tacrolimus (FK506). Here, we show that ubiquitin-specific peptidase 5/isopeptidase T (USP5/IsoT) is a target molecule of vialinin A, identified by using a beads-probe method. Vialinin A inhibited the peptidase activity of USP5/IsoT and also inhibited the enzymatic activities of USP4 among deubiquitinating enzymes tested.

View Article and Find Full Text PDF

Vialinin A is an extremely potent inhibitor of tumor necrosis factor (TNF)-α release from RBL-2H3 cells. The present study investigated in detail the inhibitory effects of vialinin A and its analog, 5',6'-dimethyl-1,1':4',1″-terphenyl-2',3',4,4″-tetraol (DMT), on TNF-α. Vialinin A and DMT inhibited the release of TNF-α from RBL-2H3 cells in a dose-dependent manner, but had no effect on β-hexosaminidase activity.

View Article and Find Full Text PDF

Background: We aimed to study the effects of intra-articular injection of jellyfish mucin (qniumucin) on articular cartilage degeneration in a model of osteoarthritis (OA) created in rabbit knees by resection of the anterior cruciate ligament. Qniumucin was extracted from Aurelia aurita (moon jellyfish) and Stomolophus nomurai (Nomura's jellyfish) and purified by ion exchange chromatography. The OA model used 36 knees in 18 Japanese white rabbits.

View Article and Find Full Text PDF

The structure of O-glycan in qniumucin (Q-mucin), which is a novel mucin extracted from jellyfish, was analyzed by a combination of NMR and ESI-MS/MS. A previously unidentified monosaccharide involved in the glycan chains was determined to be N-acetylgalactosamine (GalNAc) substituted by 2-aminoethylphosphonate (AEP) at the C-6. The O-glycans in Q-mucin from Aurelia aurita were proved to be mainly composed of three monosaccharides: GalNAc, AEP-(O-->6)-GalNAc, and P-6-GalNAc.

View Article and Find Full Text PDF

A novel mucin (qniumucin), which we recently discovered in jellyfish, was investigated by several NMR techniques. Almost all the peaks in the (13)C and proton NMR spectra were satisfactorily assigned to the amino acids in the main chain and to the bridging GalNAc, the major sugar in the saccharide branches. The amino acid sequence in the tandem repeat part (-VVETTAAP-) was reconfirmed by the cross-peaks between alpha protons and carbonyl carbons in the HMBC spectrum.

View Article and Find Full Text PDF

Nitrile hydratases (NHases) have an unusual iron or cobalt catalytic center with two oxidized cysteine ligands, cysteine-sulfinic acid and cysteine-sulfenic acid, catalyzing the hydration of nitriles to amides. Recently, we found that the NHase of Rhodococcus erythropolis N771 exhibited an additional catalytic activity, converting tert-butylisonitrile (tBuNC) to tert-butylamine. Taking advantage of the slow reactivity of tBuNC and the photoreactivity of nitrosylated NHase, we present the first structural evidence for the catalytic mechanism of NHase with time-resolved x-ray crystallography.

View Article and Find Full Text PDF

Nitrile hydratase (NHase) from Rhodococcus sp. N771 is a non-heme iron enzyme catalyzing the hydration of various nitriles to the corresponding amides. We report a novel catalytic activity of NHase.

View Article and Find Full Text PDF

The optical resolution of 2-amino-1-phenylethanol (2-APE) by the solvent switch method was investigated using dehydroabietic acid (DAA), a natural chiral acid obtained as one of the main components of disproportionated rosin. The solvent dependency of optical rotation measurements of 2-APE, DAA and the diastereomeric salts suggested solvent control of optical resolution. Both (R)- and (S)-2-APE were resolved, as the first success for aminoalcohols, only by changing the resolving solvents: (S)-2-APE was obtained in high optical purity by a single crystallization operation with polar solvents (epsilon > 50), whereas the efficiency was lower for (R)-2-APE using less polar solvents (20 < epsilon < 40).

View Article and Find Full Text PDF

The geometric and electronic structure of the active site of the non-heme iron enzyme nitrile hydratase (NHase) is studied using sulfur K-edge XAS and DFT calculations. Using thiolate (RS(-))-, sulfenate (RSO(-))-, and sulfinate (RSO(2)(-))-ligated model complexes to provide benchmark spectral parameters, the results show that the S K-edge XAS is sensitive to the oxidation state of S-containing ligands and that the spectrum of the RSO(-) species changes upon protonation as the S-O bond is elongated (by approximately 0.1 A).

View Article and Find Full Text PDF