The swimbladder volume is regulated by O(2) transfer between the luminal space and the blood In the swimbladder, lactic acid generation by anaerobic glycolysis in the gas gland epithelial cells and its recycling through the rete mirabile bundles of countercurrent capillaries are essential for local blood acidification and oxygen liberation from hemoglobin by the "Root effect." While O(2) generation is critical for fish flotation, the molecular mechanism of the secretion and recycling of lactic acid in this critical process is not clear. To clarify molecules that are involved in the blood acidification and visualize the route of lactic acid movement, we analyzed the expression of 17 members of the H(+)/monocarboxylate transporter (MCT) family in the fugu genome and found that only MCT1b and MCT4b are highly expressed in the fugu swimbladder.
View Article and Find Full Text PDFLuminal surface of the swimbladder is covered by gas gland epithelial cells and is responsible for inflating the swimbladder by generating O(2) from Root-effect hemoglobin that releases O(2) under acidic conditions. Acidification of blood is achieved by lactic acid secreted from gas gland cells, which are poor in mitochondria but rich in the glycolytic activity. The acidic conditions are locally maintained by a countercurrent capillary system called rete mirabile.
View Article and Find Full Text PDFMitochondrion-rich cells (MRCs), or ionocytes, play a central role in aquatic species, maintaining body fluid ionic homeostasis by actively taking up or excreting ions. Since their first description in 1932 in eel gills, extensive morphological and physiological analyses have yielded important insights into ionocyte structure and function, but understanding the developmental pathway specifying these cells remains an ongoing challenge. We previously succeeded in identifying a key transcription factor, Foxi3a, in zebrafish larvae by database mining.
View Article and Find Full Text PDFDeubiquitinating enzymes (DUBs) remove ubiquitin from conjugated substrates to regulate various cellular processes. The Zn(2+)-dependent DUBs AMSH and AMSH-LP regulate receptor trafficking by specifically cleaving Lys 63-linked polyubiquitin chains from internalized receptors. Here we report the crystal structures of the human AMSH-LP DUB domain alone and in complex with a Lys 63-linked di-ubiquitin at 1.
View Article and Find Full Text PDFMBD3, a component of the histone deacetylase NuRD complex, contains the methyl-CpG-binding domain (MBD), yet does not possess appreciable mCpG-specific binding activity. The functional significance of MBD3 in the NuRD complex remains enigmatic, partly because of the limited availability of biochemical approaches, such as immunoprecipitation, to analyze MBD3. In this study, we stably expressed the FLAG-tagged version of MBD3 in HeLa cells.
View Article and Find Full Text PDFInward rectifier potassium channels (Kir) play an important role in the K(+) secretion from the kidney. Recently, a new subfamily of Kir, Kir7.1, has been cloned and shown to be present in the kidney as well as in the brain, choroid plexus, thyroid, and intestine.
View Article and Find Full Text PDF