Publications by authors named "Kayoko Ohura"

Aims: Paraoxonase 1 (PON1) binds to high-density lipoprotein (HDL) and protects against atherosclerosis. However, the relationship between functional PON1 Q192R polymorphism, which is associated with the hydrolysis of paraoxon (POXase activity) and atherosclerotic cardiovascular disease (ASCVD), remains controversial. As the effect of PON1 Q192R polymorphism on the HDL function is unclear, we investigated the relationship between this polymorphism and the cholesterol efflux capacity (CEC), one of the biological functions of HDL, in association with the PON1 activity.

View Article and Find Full Text PDF

Fluphenazine (FPZ) decanoate, an ester-type prodrug formulated as a long-acting injection (LAI), is used in the treatment of schizophrenia. FPZ enanthate was also developed as an LAI formulation, but is no longer in use clinically because of the short elimination half-life of FPZ, the parent drug, after intramuscular injection. In the present study, the hydrolysis of FPZ prodrugs was evaluated in human plasma and liver to clarify the reason for this difference in elimination half-lives.

View Article and Find Full Text PDF
Article Synopsis
  • Esmolol is used for quickly managing ventricular rate due to its rapid action and elimination, primarily through hydrolysis into esmolol acid.
  • * A study found that esmolol is mostly broken down in plasma with white blood cells and platelets, while its hydrolysis in red blood cells is minimal due to low enzyme activity.
  • * Human carboxylesterase 1 (hCE1) is the key enzyme for esmolol metabolism in both white blood cells and the liver, with acyl protein thioesterase 1 (APT1) also playing a role in liver hydrolysis.
View Article and Find Full Text PDF

The first-pass hydrolysis of oral ester-type prodrugs in the liver and intestine is mediated mainly by hCE1 and hCE2 of the respective predominant carboxylesterase (CES) isozymes. In order to provide high blood concentrations of the parent drugs, it is preferable that prodrugs are absorbed as an intact ester in the intestine, then rapidly converted to active parent drugs by hCE1 in the liver. In the present study, we designed a prodrug of fexofenadine (FXD) as a model parent drug that is resistant to hCE2 but hydrolyzed by hCE1, utilizing the differences in catalytic characteristics of hCE1 and hCE2.

View Article and Find Full Text PDF

The aim of this experiment was to study the effects of calcium ion on the hydrolysis of cationic and anionic substrate by human butyrylcholinesterase (HuBChE). The hydrolysis of aspirin, an anionic substrate, by HuBChE was markedly increased in the presence of increasing concentrations of calcium ion (∼20 mM), as shown by the increasing k (∼18-fold). Butyrylthiocholine (BTC), a cationic substrate, was biphasically hydrolyzed with substrate activation; a second BTC molecule caused a 3-fold increase in k.

View Article and Find Full Text PDF

In contrast to a single human carboxylesterase 2 (CES2) isozyme (hCE2), three CES2 genes have been identified in cynomolgus monkeys: , , and Although mfCES2A protein is expressed in several organs, is a pseudogene and the phenotype of the gene has not yet been clarified in tissues. In previous studies, we detected an unidentified esterase in the region of CES2 mobility upon nondenaturing PAGE analysis of monkey intestinal microsomes, which showed immunoreactivity for anti-mfCES2A antibody. The aim of the present study was to identify this unidentified esterase from monkey small intestine.

View Article and Find Full Text PDF

The hydrolysis activity and expression level of carboxylesterase (CES) in skin were compared with liver and intestine in the same individual of beagle dog and cynomolgus monkey, and their aging effects were studied. CES1 isozymes were mainly present in skin of both animals. The dermal hydrolysis activity was about 10 and 40% of hepatic activity in beagle dog and cynomolgus monkey, respectively.

View Article and Find Full Text PDF

The glycopyrrolate soft analog, SGM, designed to be easily hydrolyzed into the significantly less active zwitterionic metabolite, SGa, typifies soft drug that reduces systemic side effects (a problem often seen with traditional anticholinergics) following local administration. In this study, hydrolysis of 2R3'R-SGM, the highest pharmacologically active stereoisomer of SGM, was investigated in human and rat tissues. In both species, 2R3'R-SGM was metabolized to 2R3'R-SGa in plasma but was stable in liver and intestine.

View Article and Find Full Text PDF

Loteprednol etabonate (LE) is a soft corticosteroid with two labile ester bonds at 17α- and 17β-positions. Its corticosteroidal activity disappears upon hydrolysis of either ester bond. Hydrolysis of both ester bonds produces the inactive metabolite, Δ-cortienic acid (Δ-CA).

View Article and Find Full Text PDF

Carboxylesterase 2 (CES2), which is a member of the serine hydrolase superfamily, is primarily expressed in the human small intestine, where it plays an important role in the metabolism of ester-containing drugs. Therefore, to facilitate continued progress in ester-containing drug development, it is crucial to evaluate how CES2-mediated hydrolysis influences its intestinal permeability characteristics. Human colon carcinoma Caco-2 cells have long been widely used in drug permeability studies as an enterocyte model.

View Article and Find Full Text PDF

Background: Butyrylcholinesterase (BChE), an enzyme essential for drug metabolism, has been investigated as antidotes against organophosphorus nerve agents, and the efficacy and safety have been studied in cynomolgus macaques. BChE polymorphisms partly account for variable BChE activities among individuals in humans, but have not been investigated in cynomolgus macaques.

Methods: Molecular characterization was carried out by analyzing primary sequence, gene, tissue expression, and genetic variants.

View Article and Find Full Text PDF

Carboxylesterase (CES) is important for the detoxification of a wide range of drugs and xenobiotics. In this study, the hepatic level of CES2 mRNA was examined in cynomolgus macaques used widely in preclinical studies for drug metabolism. Three CES2 mRNAs were present in cynomolgus macaque liver.

View Article and Find Full Text PDF

In the present study, we established a quantitative western blotting method to measure the expression level of recombinant serine hydrolases based on their catalytic mechanism. Fluorophosphonate (FP)-biotin was selected as a universal probe to quantify their expression levels, since FP moiety irreversibly inhibits serine hydrolases through strong stoichiometric binding to active serine residue. The linearity of detection using FP-biotin was assessed on three serine hydrolases; human carboxylesterase (CES) 1, butyrylcholinesterase and porcine liver esterases (PLE).

View Article and Find Full Text PDF

We studied the effect that three alcohols, ethanol (EA), propanol (PA), and isopropanol (IPA), have on the skin permeation of p-hydroxy benzoic acid methyl ester (HBM), a model ester-type prodrug. HBM was applied to Yucatan micropig skin in a saturated phosphate buffered solution with or without 10% alcohol, and HBM and related materials in receptor fluid and skin were determined with HPLC. In the absence of alcohol, p-hydroxy benzoic acid (HBA), a metabolite of HBM, permeated the skin the most.

View Article and Find Full Text PDF

para-Aminobenzoic acid (PABA) has long been used as an indicator of the completeness of 24-h urine collection by determination of total urinary excretion of PABA and its metabolite, N-acetyl-PABA. N-Acetyl-PABA is formed by human arylamine N-acetyltransferase 1 (NAT1) in liver and intestine. This intestinal metabolism may reduce the urinary recovery of PABA due to secretion of N-acetyl-PABA into the intestinal lumen.

View Article and Find Full Text PDF

Caco-2 cells predominantly express human carboxylesterase 1 (hCE1), unlike the human intestine that predominantly expresses human carboxylesterase 2 (hCE2). Transport experiments using Caco-2 cell monolayers often lead to misestimation of the intestinal absorption of prodrugs because of this difference, as prodrugs designed to increase the bioavailability of parent drugs are made to be resistant to hCE2 in the intestine, so that they can be hydrolyzed by hCE1 in the liver. In the present study, we tried to establish a new Caco-2 subclone, with a similar pattern of carboxylase expression to human intestine, to enable a more accurate estimation of the intestinal absorption of prodrugs.

View Article and Find Full Text PDF
Article Synopsis
  • Cynomolgus monkeys show different oral absorption patterns compared to humans due to variations in intestinal metabolism, particularly in the activity of carboxylesterase 2 (CES2) isozymes.
  • The study found that monkey intestinal microsomes had lower hydrolytic activity than human microsomes and displayed a preference for hydrolyzing the R-form of propranolol derivatives, unlike humans who do not show enantioselectivity in this regard.
  • Molecular simulations indicated that structural differences in the CES2 enzymes between species contribute to these differences in metabolic activity, helping to explain the varying pharmacokinetics observed in the animal model versus humans.
View Article and Find Full Text PDF

The expression of carboxylesterase (CES) and the transdermal movement of an ester prodrug were studied in rat skin. Ethyl-fexofenadine (ethyl-FXD) was used as a model lipophilic prodrug that is slowly hydrolyzed to its parent drug, FXD (MW 502). Among the CES1 and CES2 isozymes, Hydrolase A is predominant in rat skin and this enzyme was involved in 65% of the cutaneous hydrolysis of ethyl-FXD.

View Article and Find Full Text PDF

The aim of this study was to develop a suitable prodrug for fexofenadine (FXD), a model parent drug, that is resistant to intestinal esterase but converted to FXD by hepatic esterase. Carboxylesterases (CESs), human carboxylesterase 1 (hCE1) and human carboxylesterase 2 (hCE2), are the major esterases in human liver and intestine, respectively. These two CESs show quite different substrate specificities, and especially, hCE2 poorly hydrolyzes prodrugs with large acyl groups.

View Article and Find Full Text PDF

Caco-2, human colon carcinoma cell line, has been widely used as a model system for intestinal epithelial permeability because Caco-2 cells express tight-junctions, microvilli, and a number of enzymes and transporters characteristic of enterocytes. However, the functional differentiation and polarization of Caco-2 cells to express sufficient tight-junctions (a barrier) usually takes over 21 days in culture. This may be due to the cell culture environment, for example inflammation induced by plastic petri dishes.

View Article and Find Full Text PDF

The age-associated alteration in expression levels of carboxylesterases (CESs) can affect both intestinal and hepatic first-pass metabolism after oral administration of xenobiotic esters such as prodrugs. In this study, the age-related expression of CES isozymes and hydrolase activities were simultaneously investigated in liver, jejunum, and ileum from 8-, 46-, and 90-week-old rats. Rat liver expresses three major CES1 isozymes, Hydrolase A, Hydrolase B, and Hydrolase C, as well as one minor CES1 (Egasyn) and three minor CES2 isozymes (RL4, AY034877, and D50580).

View Article and Find Full Text PDF

Human dipeptidylpeptidase IV (hDPPIV) is an enzyme that is in hydrolase class and has various roles in different parts of human body. Its deficiency may cause some disorders in the gastrointestinal, neurologic, endocrinological and immunological systems of humans. In the present study, hDPPIV enzyme was expressed on Spodoptera frugiperda (Sf9) cell lines as a host cell, and the expression of hDPPIV was obtained by a baculoviral expression system.

View Article and Find Full Text PDF

Differences in esterase expression among human, rhesus monkey, cynomolgus monkey, dog, minipig, rabbit, rat, and mouse plasma were identified using native polyacrylamide gel electrophoresis. Paraoxonase (PON) and butyrylcholinesterase (BChE) were ubiquitous in all species, but were highly expressed in primates and dogs, whereas carboxylesterase (CES) was only abundant in rabbits, mice, and rats. Several unknown esterases were observed in minipig and mouse plasma.

View Article and Find Full Text PDF

The contribution of intestinal first-pass hydrolysis to oral bioavailability was evaluated in rats using a model prodrug of fexofenadine (FXD), which has poor oral bioavailability. The prodrug, ethyl-FXD, has high membrane permeability but the oral bioavailability of FXD derived from ethyl-FXD was only 6.2%.

View Article and Find Full Text PDF

The intestinal absorption mechanism of temocapril, an ester-type prodrug of temocaprilat, was evaluated using Caco-2 cell monolayers with or without active carboxylesterase (CES)-mediated hydrolysis. The inhibition of CES-mediated hydrolysis was achieved by pretreatment of the monolayers with bis-p-nitrophenyl phosphate (BNPP), which inhibited 94% of the total hydrolysis of temocapril in the Caco-2 cells. The remaining 6% hydrolysis was due to the presence of serine esterases, other than CES, on the cell membranes.

View Article and Find Full Text PDF