Objective: Preserving core body temperature across a wide range of ambient temperatures requires adaptive changes of thermogenesis that must be offset by corresponding changes of energy intake if body fat stores are also to be preserved. Among neurons implicated in the integration of thermoregulation with energy homeostasis are those that express both neuropeptide Y (NPY) and agouti-related protein (AgRP) (referred to herein as AgRP neurons). Specifically, cold-induced activation of AgRP neurons was recently shown to be required for cold exposure to increase food intake in mice.
View Article and Find Full Text PDFWhen mammals are exposed to a warm environment, overheating is prevented by activation of "warm-responsive" neurons (WRNs) in the hypothalamic preoptic area (POA) that reduce thermogenesis while promoting heat dissipation. Heat exposure also impairs glucose tolerance, but whether this also results from activation of POA WRNs is unknown. To address this question, we sought in the current work to determine if glucose intolerance induced by heat exposure can be attributed to activation of a specific subset of WRNs that express pituitary adenylate cyclase-activating peptide (ie, POAPacap neurons).
View Article and Find Full Text PDFThe brain plays an essential role in driving daily rhythms of behavior and metabolism in harmony with environmental light-dark cycles. Within the brain, the dorsomedial hypothalamic nucleus (DMH) has been implicated in the integrative circadian control of feeding and energy homeostasis, but the underlying cell types are unknown. Here, we identify a role for DMH leptin receptor-expressing (DMH) neurons in this integrative control.
View Article and Find Full Text PDFTo maintain energy homeostasis during cold exposure, the increased energy demands of thermogenesis must be counterbalanced by increased energy intake. To investigate the neurobiological mechanisms underlying this cold-induced hyperphagia, we asked whether agouti-related peptide (AgRP) neurons are activated when animals are placed in a cold environment and, if so, whether this response is required for the associated hyperphagia. We report that AgRP neuron activation occurs rapidly upon acute cold exposure, as do increases of both energy expenditure and energy intake, suggesting the mere perception of cold is sufficient to engage each of these responses.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
October 2018
The ability to maintain core temperature within a narrow range despite rapid and dramatic changes in environmental temperature is essential for the survival of free-living mammals, and growing evidence implicates an important role for the hormone leptin. Given that thyroid hormone plays a major role in thermogenesis and that circulating thyroid hormone levels are reduced in leptin-deficient states (an effect partially restored by leptin replacement), we sought to determine the extent to which leptin's role in thermogenesis is mediated by raising thyroid hormone levels. To this end, we 1) quantified the effect of physiological leptin replacement on circulating levels of thyroid hormone in leptin-deficient ob/ob mice, and 2) determined if the effect of leptin to prevent the fall in core temperature in these animals during cold exposure is mimicked by administration of a physiological replacement dose of triiodothyronine (T).
View Article and Find Full Text PDFAndrogen deprivation in men leads to increased adiposity, but the mechanisms underlying androgen regulation of fat mass have not been fully defined. Androgen receptor (AR) is expressed in monocytes/macrophages, which are resident in key metabolic tissues and influence energy metabolism in surrounding cells. Male mice bearing a cell-specific knockout of the AR in monocytes/macrophages (M-ARKO) were generated to determine whether selective loss of androgen signaling in these cells would lead to altered body composition.
View Article and Find Full Text PDFBackground: Widely used as a weight loss supplement, trans-10,cis-12 conjugated linoleic acid (10,12 CLA) promotes fat loss in obese mice and humans, but has also been associated with insulin resistance.
Objective: We therefore sought to directly compare weight loss by 10,12 CLA versus caloric restriction (CR, 15-25%), an acceptable healthy method of weight loss, to determine how 10,12 CLA-mediated weight loss fails to improve glucose metabolism.
Methods: Obese mice with characteristics of human metabolic syndrome were either supplemented with 10,12 CLA or subjected to CR to promote weight loss.
Objective: To investigate the role played by leptin in thermoregulation, we studied the effects of physiological leptin replacement in leptin-deficient ob/ob mice on determinants of energy balance, thermogenesis and heat retention under 3 different ambient temperatures.
Methods: The effects of housing at 14 °C, 22 °C or 30 °C on core temperature (telemetry), energy expenditure (respirometry), thermal conductance, body composition, energy intake, and locomotor activity (beam breaks) were measured in ob/ob mice implanted subcutaneously with osmotic minipumps at a dose designed to deliver a physiological replacement dose of leptin or its vehicle-control.
Results: As expected, the hypothermic phenotype of ob/ob mice was partially rescued by administration of leptin at a dose that restores plasma levels into the physiological range.
Am J Physiol Regul Integr Comp Physiol
April 2016
Based largely on a number of short-term administration studies, growing evidence suggests that central oxytocin is important in the regulation of energy balance. The goal of the current work is to determine whether long-term third ventricular (3V) infusion of oxytocin into the central nervous system (CNS) is effective for obesity prevention and/or treatment in rat models. We found that chronic 3V oxytocin infusion between 21 and 26 days by osmotic minipumps both reduced weight gain associated with the progression of high-fat diet (HFD)-induced obesity and elicited a sustained reduction of fat mass with no decrease of lean mass in rats with established diet-induced obesity.
View Article and Find Full Text PDFThe lean body weight phenotype of hepatic lipase (HL)-deficient mice (hl(-/-)) suggests that HL is required for normal weight gain, but the underlying mechanisms are unknown. HL plays a unique role in lipoprotein metabolism performing bridging as well as catalytic functions, either of which could participate in energy homeostasis. To determine if both the catalytic and bridging functions or the catalytic function alone are required for the effect of HL on body weight, we studied (hl(-/-)) mice that transgenically express physiologic levels of human (h)HL (with catalytic and bridging functions) or a catalytically-inactive (ci)HL variant (with bridging function only) in which the catalytic Serine 145 was mutated to Alanine.
View Article and Find Full Text PDFSurvival of free-living animals depends on the ability to maintain core body temperature in the face of rapid and dramatic changes in their thermal environment. If food intake is not adjusted to meet the changing energy demands associated with changes of ambient temperature, a serious challenge to body energy stores can occur. To more fully understand the coupling of thermoregulation to energy homeostasis in normal animals and to investigate the role of the adipose hormone leptin to this process, comprehensive measures of energy homeostasis and core temperature were obtained in leptin-deficient ob/ob mice and their wild-type (WT) littermate controls when housed under cool (14°C), usual (22°C) or ∼ thermoneutral (30°C) conditions.
View Article and Find Full Text PDFMetabolic diseases such as obesity and atherosclerosis result from complex interactions between environmental factors and genetic variants. A panel of chromosome substitution strains (CSSs) was developed to characterize genetic and dietary factors contributing to metabolic diseases and other biological traits and biomedical conditions. Our goal here was to identify quantitative trait loci (QTLs) contributing to obesity, energy expenditure, and atherosclerosis.
View Article and Find Full Text PDFRecent advances in human brown adipose tissue (BAT) imaging technology have renewed interest in the identification of BAT activators for the treatment of obesity and diabetes. In uncontrolled diabetes (uDM), activation of BAT is implicated in glucose lowering mediated by intracerebroventricular (icv) administration of leptin, which normalizes blood glucose levels in streptozotocin (STZ)-induced diabetic rats. The potent effect of icv leptin to increase BAT glucose uptake in STZ-diabetes is accompanied by the return of reduced plasma thyroxine (T4) levels and BAT uncoupling protein-1 (Ucp1) mRNA levels to nondiabetic controls.
View Article and Find Full Text PDFActivation of AMP-activated protein kinase (AMPK) signaling reduces hepatic steatosis and hepatic insulin resistance; however, its regulatory mechanisms are not fully understood. In this study, we sought to determine whether vasodilator-stimulated phosphoprotein (VASP) signaling improves lipid metabolism in the liver and, if so, whether VASP's effects are mediated by AMPK. We show that disruption of VASP results in significant hepatic steatosis as a result of significant impairment of fatty acid oxidation, VLDL-triglyceride (TG) secretion, and AMPK signaling.
View Article and Find Full Text PDFDespite the suggestion that reduced energy expenditure may be a key contributor to the obesity pandemic, few studies have tested whether acutely reduced energy expenditure is associated with a compensatory reduction in food intake. The homeostatic mechanisms that control food intake and energy expenditure remain controversial and are thought to act over days to weeks. We evaluated food intake in mice using two models of acutely decreased energy expenditure: 1) increasing ambient temperature to thermoneutrality in mice acclimated to standard laboratory temperature or 2) exercise cessation in mice accustomed to wheel running.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
January 2012
Growing evidence suggests that oxytocin plays an important role in the regulation of energy balance and that central oxytocin administration induces weight loss in diet-induced obese (DIO) animals. To gain a better understanding of how oxytocin mediates these effects, we examined feeding and neuronal responses to oxytocin in animals rendered obese following exposure to either a high-fat (HFD) or low-fat diet (LFD). Our findings demonstrate that peripheral administration of oxytocin dose-dependently reduces food intake and body weight to a similar extent in rats maintained on either diet.
View Article and Find Full Text PDFMyostatin deficiency causes dramatically increased skeletal muscle mass and reduced fat mass. Previously, myostatin-deficient mice were reported to have unexpectedly low total energy expenditure (EE) after normalizing to body mass, and thus, a metabolic cause for low fat mass was discounted. To clarify how myostatin deficiency affects the control of body fat mass and energy balance, we compared rates of oxygen consumption, body composition, and food intake in young myostatin-deficient mice relative to wild-type (WT) and heterozygous (HET) controls.
View Article and Find Full Text PDFPatients with craniopharyngioma (CP), a tumor located in the pituitary and/or hypothalamus, are susceptible to developing obesity and many metabolic complications. The study aim was to create a rodent model that mimics the complex neuroanatomical and metabolic disturbances commonly seen in obese CP patients. We compared the metabolic phenotype of animals with three distinct types of hypothalamic lesions: 1) destruction of the arcuate nucleus (ARC) induced by monosodium glutamate (MSG), 2) electrolytic lesion of the adjacent ventromedial nucleus (VMN) alone, 3) both the VMN and dorsomedial nucleus (DMN), or a 4) combined medial hypothalamic lesion (CMHL) affecting the VMN, DMN, and the ARC.
View Article and Find Full Text PDFMechanisms regulating spontaneous physical activity remain poorly characterized despite evidence of influential genetic and acquired factors. We evaluated ambulatory activity and wheel running in leptin-deficient ob/ob mice and in wild-type mice rendered hypoleptinemic by fasting in both the presence and absence of subcutaneous leptin administration. In ob/ob mice, leptin treatment to plasma levels characteristic of wild-type mice acutely increased both ambulatory activity (by 4,000 ± 200 beam breaks/dark cycle, P < 0.
View Article and Find Full Text PDFObjective: Depletion of body fat stores during uncontrolled, insulin-deficient diabetes (uDM) results in markedly reduced plasma leptin levels. This study investigated the role of leptin deficiency in the genesis of severe insulin resistance and related metabolic and neuroendocrine derangements induced by uDM.
Research Design And Methods: Adult male Wistar rats remained nondiabetic or were injected with the beta-cell toxin, streptozotocin (STZ) to induce uDM and subsequently underwent subcutaneous implantation of an osmotic minipump containing either vehicle or leptin at a dose (150 microg/kg/day) designed to replace leptin at nondiabetic plasma levels.
Objective: Analysis of energy expenditure (EE) in mice is essential to obesity research. Since EE varies with body mass, comparisons between lean and obese mice are confounded unless EE is normalized to account for body mass differences. We 1) assessed the validity of ratio-based EE normalization involving division of EE by either total body mass (TBM) or lean body mass (LBM), 2) compared the independent contributions of LBM and fat mass (FM) to EE, and 3) investigated whether leptin contributes to the link between FM and EE.
View Article and Find Full Text PDFIn peripheral tissues, the link between obesity and insulin resistance involves low-grade inflammation induced by macrophage activation and proinflammatory cytokine signaling. Since proinflammatory cytokines are also induced in the hypothalamus of animals placed on a high-fat (HF) diet and can inhibit neuronal signal transduction pathways required for normal energy homeostasis, hypothalamic inflammation is hypothesized to contribute to the pathogenesis of diet-induced obesity (DIO). We addressed this hypothesis by perturbing the inflammatory milieu of the hypothalamus in adult male Wistar rats using intracerebroventricular (icv) administration of interleukin-4 (IL-4), a Th2 cytokine that promotes alternative activation (M2) of macrophages and microglia.
View Article and Find Full Text PDFObjective: The hormone fibroblast growth factor 21 (FGF21) exerts diverse, beneficial effects on energy balance and insulin sensitivity when administered systemically to rodents with diet-induced obesity (DIO). The current studies investigate whether central FGF21 treatment recapitulates these effects.
Research Design And Methods: After preliminary dose-finding studies, either saline vehicle or recombinant human FGF21 (0.
Hepatic lipase (HL)-mediated lipoprotein hydrolysis provides free fatty acids for energy, storage, and nutrient signaling and may play a role in energy homeostasis. Because HL-activity increases with increased visceral fat, we hypothesized that increased HL-activity favors weight gain and obesity and consequently, that HL deficiency would reduce body fat stores and protect against diet-induced obesity. To test this hypothesis, we compared wild-type mice (with endogenous HL) and mice genetically deficient in HL with respect to daily body weight and food intake, body composition, and adipocyte size on both chow and high-fat (HF) diets.
View Article and Find Full Text PDF