Human walking gait is a personal story written by the body, a tool for understanding biological identity in healthcare and security. Gait analysis methods traditionally diverged between these domains but are now merging their complementary strengths to unlock new possibilities. Using large ground reaction force (GRF) datasets for gait recognition is a way to uncover subtle variations that define individual gait patterns.
View Article and Find Full Text PDFWalking gait data acquired with force platforms may be used for person re-identification (re-ID) in various authentication, surveillance, and forensics applications. Current force platform-based re-ID systems classify a fixed set of identities (IDs), which presents a problem when IDs are added or removed from the database. We formulated force platform-based re-ID as a deep metric learning (DML) task, whereby a deep neural network learns a feature representation that can be compared between inputs using a distance metric.
View Article and Find Full Text PDF