Routine patient testing for viral infections is critical to identify infected individuals for treatment and to prevent spreading of infections to others. Developing robust and reliable diagnostic tools to detect nucleic acids of viruses at the point-of-care could greatly assist the clinical management of viral infections. The remarkable stability and high binding affinity of peptide nucleic acids (PNAs) to target nucleic acids could make PNA-based biosensors an excellent starting point to develop new nucleic acid detection technologies.
View Article and Find Full Text PDFNature uses proteins and nucleic acids to form a wide array of functional architectures, and scientists have found inspiration from these structures in the rational design of synthetic biomaterials. We have recently shown that a modular subunit consisting of two α-helical coiled coil peptides attached at their midpoints by an organic linking group can spontaneously self-assemble in aqueous solution to form a soluble supramolecular polymer. Here we explore the use of coiled-coil association affinity, readily tuned by amino acid sequence, as a means to predictably alter properties of these supramolecular assemblies.
View Article and Find Full Text PDFThe dimerization domain of the yeast transcription factor GCN4, one of the first coiled-coil proteins to be structurally characterized at high resolution, has served as the basis for numerous fundamental studies on α-helical folding. Mutations in the GCN4 leucine zipper are known to change its preferred oligomerization state from dimeric to trimeric or tetrameric; however, the wild-type sequence has been assumed to encode a two-chain assembly exclusively. Here we demonstrate that the GCN4 coiled-coil domain can populate either a dimer or trimer fold, depending on environment.
View Article and Find Full Text PDF