Steroid hormone metabolism by the gut microbiome has multiple implications for mammalian physiology, but the underlying mechanisms and broader significance of this activity remains largely unknown. Here, we isolate a novel human gut bacterium, strain HCS.1, that reduces cortisol, progesterone, testosterone, and related steroid hormones to 3β,5β-tetrahydrosteroid products.
View Article and Find Full Text PDFIn coastal marine ecosystems, kelp forests serve as a vital habitat for numerous species and significantly influence local nutrient cycles. Bull kelp, or Nereocystis luetkeana, is a foundational species in the iconic kelp forests of the northeast Pacific Ocean and harbours a complex microbial community with potential implications for kelp health. Here, we report the isolation and functional characterisation of 16 Nereocystis-associated bacterial species, comprising 13 Gammaproteobacteria, 2 Flavobacteriia and 1 Actinomycetia.
View Article and Find Full Text PDFRespiratory reductases enable microorganisms to use molecules present in anaerobic ecosystems as energy-generating respiratory electron acceptors. Here we identify three taxonomically distinct families of human gut bacteria (Burkholderiaceae, Eggerthellaceae and Erysipelotrichaceae) that encode large arsenals of tens to hundreds of respiratory-like reductases per genome. Screening species from each family (Sutterella wadsworthensis, Eggerthella lenta and Holdemania filiformis), we discover 22 metabolites used as respiratory electron acceptors in a species-specific manner.
View Article and Find Full Text PDF