Biosourced materials are gaining interest industrially, but there are still limitations on the library of available materials suitable for advanced manufacturing, especially using photopolymerization-based processing techniques. Terpenes, such as myrcene, are naturally produced materials possessing structural features, specifically alkenes, that avail themselves for such techniques. Free-radical and anionic polymerization techniques were used to explore molecular architecture, such as branching, as well as molecular weight and dispersity on physical properties prior to the production of 3D printing photopolymer resins.
View Article and Find Full Text PDFDensity functional theory (DFT) is employed to characterize in detail the mechanism for the ring-opening polymerization (ROP) of ε-caprolactone catalyzed by iron alkoxide complexes bearing redox-active bis(imino)pyridine ligands. The combination of iron with the non-innocent bis(imino)pyridine ligand permits comparison of catalytic activity as a function of oxidation state (and overall spin state). The reactivities of aryl oxide versus alkoxide initiators for the ROP of ε-caprolactone are also examined.
View Article and Find Full Text PDFA cationic iron(III) complex was active for the polymerization of various epoxides, whereas the analogous neutral iron(II) complex was inactive. Cyclohexene oxide polymerization could be "switched off" upon in situ reduction of the iron(III) catalyst and "switched on" upon in situ oxidation, which is orthogonal to what was observed previously for lactide polymerization. Conducting copolymerization reactions in the presence of both monomers resulted in block copolymers whose identity can be controlled by the oxidation state of the catalyst: selective lactide polymerization was observed in the iron(II) oxidation state and selective epoxide polymerization was observed in the iron(III) oxidation state.
View Article and Find Full Text PDF