Publications by authors named "Kayla Jaye"

Cannabis, renowned for its historical medicinal use, harbours various bioactive compounds-cannabinoids, terpenes, and flavonoids. While major cannabinoids like delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) have received extensive scrutiny for their pharmacological properties, emerging evidence underscores the collaborative interactions among these constituents, suggesting a collective therapeutic potential. This comprehensive review explores the intricate relationships and synergies between cannabinoids, terpenes, and flavonoids in cannabis.

View Article and Find Full Text PDF

Emerging research has revealed a complex bidirectional interaction between the gut microbiome and cannabis. Preclinical studies have demonstrated that the gut microbiota can significantly influence the pharmacological effects of cannabinoids. One notable finding is the ability of the gut microbiota to metabolise cannabinoids, including Δ-tetrahydrocannabinol (THC).

View Article and Find Full Text PDF
Article Synopsis
  • The gut produces special substances called metabolites that help keep us healthy and may prevent diseases like cancer.!
  • This study focused on three specific gut metabolites—sodium butyrate, inosine, and nisin—testing their effects on cancer cells from breast cancer types MCF7 and MDA-MB-231.!
  • The results showed that these metabolites can kill cancer cells and affect how those cells grow and respond to signals, but more research is needed to understand how to use them for treating cancer in people.!
View Article and Find Full Text PDF

The complex association between the gut microbiome and cancer development has been an emerging field of study in recent years. The gut microbiome plays a crucial role in the overall maintenance of human health and interacts closely with the host immune system to prevent and fight infection. This review was designed to draw a comprehensive assessment and summary of recent research assessing the anticancer activity of the metabolites (produced by the gut microbiota) specifically against breast cancer.

View Article and Find Full Text PDF

Australian native plants have adapted themselves to harsh climatic conditions enabling them to produce unique and high levels of secondary metabolites. Native fruits and vegetables have been an integral part of the Indigenous Australian diet and Bush medicine for centuries. They have recently gained popularity owing to their rich dietary fiber, minerals, polyphenolic and antioxidant contents.

View Article and Find Full Text PDF

In recent years, the role of gut microbial metabolites on the inhibition and progression of cancer has gained significant interest in anticancer research. It has been established that the gut microbiome plays a pivotal role in the development, treatment and prognosis of different cancer types which is often mediated through the gut microbial metabolites. For instance, gut microbial metabolites including bacteriocins, short-chain fatty acids and phenylpropanoid-derived metabolites have displayed direct and indirect anticancer activities through different molecular mechanisms.

View Article and Find Full Text PDF

The association between human gut microbiota and cancers has been an evolving field of biomedical research in recent years. The gut microbiota is composed of the microorganisms residing in the gastrointestinal system that interact with the host to regulate behaviours and biochemical processes within the gut. This symbiotic physiological interaction between the gut and the microbiota plays a significant role in the modulation of gut homeostasis, in which perturbations to the microbiota, also known as dysbiosis can lead to the onset of diseases, including cancer.

View Article and Find Full Text PDF