Publications by authors named "Kayla J Temple"

This Letter details our efforts to develop novel, non-acetylene-containing metabotropic glutamate receptor subtype 5 (mGlu) negative allosteric modulators (NAMs) with improved pharmacological properties. This endeavor involved replacing the ether-linked pyrimidine moiety, a metabolic liability, with various 5-membered heterocycles. From this exercise, we identified , a highly brain penetrant and selective mGlu NAM which displayed moderate potency against both human and rat mGlu.

View Article and Find Full Text PDF

Herein, we report structure-activity relationship (SAR) studies to develop novel tricyclic M PAM scaffolds with improved pharmacological properties. This endeavor involved a "tie-back" strategy to replace a 5-amino-2,4-dimethylthieno[2,3-]pyrimidine-6-carboxamide core, which led to the discovery of two novel tricyclic cores. While both tricyclic cores displayed low nanomolar potency against both human and rat M and were highly brain-penetrant, the 2,4-dimethylpyrido[4',3':4,5]thieno[2,3-]pyrimidine tricycle core provided lead compound, , with an overall superior pharmacological and drug metabolism and pharmacokinetics (DMPK) profile, as well as efficacy in a preclinical antipsychotic animal model.

View Article and Find Full Text PDF

This Letter details our efforts to develop novel tricyclic muscarinic acetylcholine receptor subtype 4 (M) positive allosteric modulator (PAM) scaffolds with improved pharmacological properties. This endeavor involved a "tie-back" strategy to replace the 3-amino-5-chloro-4,6-dimethylthieno[2,3-]pyridine-2-carboxamide core, which led to the discovery of two novel tricyclic cores: an 8-chloro-9-methylpyrido[3',2':4,5]thieno[3,2-]pyrimidin-4-amine core and 8-chloro-7,9-dimethylpyrido[3',2':4,5]furo[3,2-]pyrimidin-4-amine core. Both tricyclic cores displayed low nanomolar potency against human M and greatly reduced cytochrome P450 inhibition when compared with parent compound .

View Article and Find Full Text PDF

This Letter details our efforts to develop novel tricyclic M PAM scaffolds with improved pharmacological properties. This endeavor involved a "tie-back" strategy to replace the 3-amino-4,6-dimethylthieno[2,3-b]pyridine-2-carboxamide core which lead to the discovery of two novel tricyclic cores: a 7,9-dimethylpyrido[3',2':4,5]thieno[3,2-d]pyrimidine core and 2,4-dimethylthieno[2,3-b:5,4-c']dipyridine core. Both tricyclic cores displayed low nanomolar potency against the human M receptor.

View Article and Find Full Text PDF

This Letter details our efforts to develop new M PAM scaffolds with improved pharmacological properties. This endeavor involved replacing the 3,4-dimethylpyridazine core with two novel cores: a 2,3-dimethyl-2H-indazole-5-carboxamide core or a 1-methyl-1H-benzo[d][1,2,3]triazole-6-carboxamide core. Due to shallow SAR, these cores were further evolved into two unique tricyclic cores: an 8,9-dimethyl-8H-pyrazolo[3,4-h]quinazoline core and an 1-methyl-1H-[1,2,3]triazolo[4,5-h]quinazoline core.

View Article and Find Full Text PDF

This Letter details our efforts to discover structurally unique M PAMs containing 5,6-heteroaryl ring systems. In an attempt to improve the DMPK profiles of the 2,3-dimethyl-2H-indazole-5-carboxamide and 1-methyl-1H-benzo[d][1,2,3]triazole-6-carboxamide cores, we investigated a plethora of core replacements. This exercise identified a novel 2,3-dimethylimidazo[1,2-a]pyrazine-6-carboxamide core that provided improved M PAM activity and CNS penetration.

View Article and Find Full Text PDF

This Letter details our efforts to replace the 2,4-dimethylquinoline carboxamide core of our previous M PAM series, which suffered from high predicted hepatic clearance and protein binding. A scaffold hopping exercise identified a novel 3,4-dimethylcinnoline carboxamide core that provided good M PAM activity and improved clearance and protein binding profiles.

View Article and Find Full Text PDF

Human platelets express two protease-activated receptors (PARs), PAR1 (F2R) and PAR4 (F2RL3), which are activated by a number of serine proteases that are generated during pathological events and cause platelet activation. Recent interest has focused on PAR4 as a therapeutic target, given PAR4 seems to promote experimental thrombosis and procoagulant microparticle formation, without a broadly apparent role in hemostasis. However, it is not yet known whether PAR4 activity plays a role in platelet-leukocyte interactions, which are thought to contribute to both thrombosis and acute or chronic thrombo-inflammatory processes.

View Article and Find Full Text PDF

A set of synthetic approaches was developed and applied to the synthesis of eight frame-shifted isoprenoid diphosphate analogues. These analogues were designed to increase or decrease the methylene units between the double bonds and/or the pyrophosphate moieties of the isoprenoid structure. Evaluation of mammalian GGTase-I and FTase revealed that small structural changes can result in substantial changes in substrate activity.

View Article and Find Full Text PDF

Discoidin domain receptor 1 (DDR1) is a receptor tyrosine kinase that binds to and is activated by collagens. DDR1 expression increases following kidney injury and accumulating evidence suggests that it contributes to the progression of injury. To this end, deletion of DDR1 is beneficial in ameliorating kidney injury induced by angiotensin infusion, unilateral ureteral obstruction, or nephrotoxic nephritis.

View Article and Find Full Text PDF

Human platelets display a unique dual receptor system for responding to its primary endogenous activator, α-thrombin. Because of the lack of efficacious antagonists, the field has relied on synthetic peptides and pepducins to describe protease-activated receptor PAR1 and PAR4 signaling. The precise contributions of each receptor have not been established in the context of thrombin.

View Article and Find Full Text PDF

This letter describes the further deconstruction of the known PAR4 inhibitor chemotypes (MWs 490-525 and with high plasma protein binding) to identify a minimum PAR4 pharmacophore devoid of metabolic liabilities and improved properties. This exercise identified a greatly simplified 2-methoxy-6-arylimidazo[2,1-b][1,3,4]thiadiazole scaffold that afforded nanomolar inhibition of both activating peptide and γ-thrombin mediated PAR4 stimulation, while reducing both molecular weight and the number of hydrogen bond donors/acceptors by ∼50%. This minimum PAR4 pharmacophore, with competitive inhibition, versus non-competitive of the larger chemotypes, allows an ideal starting point to incorporate desired functional groups to engender optimal DMPK properties towards a preclinical candidate.

View Article and Find Full Text PDF

Here, we describe the development of a series of highly selective PAR4 antagonists with nanomolar potency and selectivity versus PAR1, derived from the indole-based 3. Of these, 9j (PAR4 IC50 = 445 nM, PAR1 response IC50 > 30 μM) and 10h (PAR4 IC50 = 179 nM, PAR1 response IC50 > 30 μM) maintained an overall favorable in vitro DMPK profile, encouraging rat/mouse in vivo pharmacokinetics (PK) and activity against γ-thrombin.

View Article and Find Full Text PDF

Protein prenylation is a type of post-translational modification that aids certain proteins in localizing to the plasma member where they activate cell signaling. To better understand the isoprenoid requirements and differences of FTase and GGTase-I, a series of saturated geranylgeranyl diphosphate analogs were synthesized and screened against both mammalian FTase and GGTase-I. Of our library of compounds, several analogs proved to be substrates of GGTase-I, with 11d having a krel=0.

View Article and Find Full Text PDF

Protein geranylgeranylation is a type of post-translational modification that aids in the localization of proteins to the plasma member where they elicit cellular signals. To better understand the isoprenoid requirements of GGTase-I, a series of aryl-modified geranylgeranyl diphosphate analogs were synthesized and screened against mammalian GGTase-I. Of our seven-member library of compounds, six analogs proved to be substrates of GGTase-I, with 6d having a krel=1.

View Article and Find Full Text PDF

Herein, we report the synthesis and structure-activity relationship of a series of chiral alkoxymethyl morpholine analogs. Our efforts have culminated in the identification of (S)-2-(((6-chloropyridin-2-yl)oxy)methyl)-4-((6-fluoro-1H-indol-3-yl)methyl)morpholine as a novel potent and selective dopamine D4 receptor antagonist with selectivity against the other dopamine receptors tested (<10% inhibition at 1μM against D1, D2L, D2S, D3, and D5).

View Article and Find Full Text PDF

Herein, we report the synthesis and structure-activity relationship of a novel series of (R)-4,4-difluoropiperidine core scaffold as dopamine receptor 4 (D) antagonists. A series of compounds from this scaffold are highly potent against the D receptor and selective against the other dopamine receptors. In addition, we were able to confirm the active isomer as the (R)-enantiomer via an X-ray crystal structure.

View Article and Find Full Text PDF