Hidradenitis suppurativa (HS) is a chronic, debilitating inflammatory skin disease with a poorly understood immunopathogenesis. Here, we report that HS lesional skin is characterized by the expansion of innate lymphocytes and T cells expressing CD2, an essential activation receptor and adhesion molecule. Lymphocytes expressing elevated CD2 predominated with unique spatial distribution throughout the epidermis and hypodermis in the HS lesion.
View Article and Find Full Text PDFAntioxidants (Basel)
August 2024
Exposure to heavy metals (HMs) is often associated with inflammation and cell death, exacerbating respiratory diseases including asthma. Most inhaled particulate HM exposures result in the deposition of HM-bound fine particulate matter, PM, in pulmonary cell populations. While localized high concentrations of HMs may be a causative factor, existing studies have mostly evaluated the effects of systemic or low-dose chronic HM exposures.
View Article and Find Full Text PDFRationale: Asthma is a chronic inflammatory disease of the airways that involves crosstalk between myeloid-derived regulatory cells (MDRCs) and CD4+ T cells. Although small extracellular vesicles (sEVs) are known to mediate cell-cell communication, the role of sEV signaling via mitochondria in perpetuating asthmatic airway inflammation is unknown.
Objectives: We investigated the effects of MDRC-derived exosomes on dysregulated T cell responses in asthmatics.
Hidradenitis suppurativa (HS) is a chronic debilitating inflammatory skin disease with poorly understood pathogenesis. Single-cell RNAseq analysis of HS lesional and healthy individual skins revealed that NKT and NK cell populations were greatly expanded in HS, and they expressed elevated CD2, an activation receptor. Immunohistochemistry analyses confirmed significantly expanded numbers of CD2+ cells distributed throughout HS lesional tissue, and many co-expressed the NK marker, CD56.
View Article and Find Full Text PDFIntroduction: The SARS-CoV-2 mediated COVID-19 pandemic has impacted millions worldwide. Hyper-inflammatory processes, including cytokine storm, contribute to long-standing tissue injury and damage in COVID-19. The metabolism of sphingolipids as regulators of cell survival, differentiation, and proliferation has been implicated in inflammatory signaling and cytokine responses.
View Article and Find Full Text PDFCancer-associated fibroblasts (CAFs) have distinct roles within the tumor microenvironment, which can impact the mode and efficacy of tumor cell migration. CAFs are known to increase invasion of less-aggressive breast cancer cells through matrix remodeling and leader-follower dynamics. Here, we demonstrate that CAFs communicate with breast cancer cells through the formation of contact-dependent tunneling nanotubes (TNTs), which allow for the exchange of cargo between cell types.
View Article and Find Full Text PDFHidradenitis suppurativa (HS) is a complex and debilitating inflammatory skin disease for which no effective treatment is available currently. This is partly because of the lack of adequate human or animal models for defining the pathobiology of the disease. Here, we describe the development of air-liquid (A-L) interface, liquid-submersion (L-S), and bioreactor (Bio) ex vivo skin culture models.
View Article and Find Full Text PDFSphingolipids are bioactive lipids involved in the regulation of cell survival, proliferation, and the inflammatory response. The SphK/S1P/S1PR pathway (S1P pathway) is a driver of many anti-apoptotic and proliferative processes. Pro-survival sphingolipid sphingosine-1-phosphate (S1P) initiates its signaling cascade by interacting with various sphingosine-1-phosphate receptors (S1PR) through which it is able to exert its pro-survival or inflammatory effects.
View Article and Find Full Text PDFMulti-specific and long-lasting T cell immunity have been recognized as indicators for long term protection against pathogens including the novel coronavirus SARS-CoV-2, the causative agent of the COVID-19 pandemic. Functional significance of peripheral memory T cells in individuals recovering from COVID-19 (COVID-19 ) are beginning to be appreciated; but little is known about lung resident memory T cells (lung TRM) in SARS-CoV-2 infection. Here, we utilize a perfused three dimensional (3D) human lung tissue model and identify pre-existing local T cell immunity against SARS-CoV-2 proteins in lung tissues.
View Article and Find Full Text PDFTumor-stromal interactions within the tumor microenvironment (TME) influence lung cancer progression and response to therapeutic interventions, yet traditional studies fail to replicate the complexity of these interactions. Herein, we developed three-dimensional (3D) lung tumor models that mimic the human TME and demonstrate tumor-stromal crosstalk mediated by extracellular vesicles (EVs). EVs released by tumor cells, independent of p53 status, and fibroblasts within the TME mediate immunomodulatory effects; specifically, monocyte/macrophage polarization to a tumor-promoting M2 phenotype within this 3D-TME.
View Article and Find Full Text PDFThe host immune system shapes the fate of tumor progression. Hence, manipulating patients' immune system to activate host immune responses against cancer pathogenesis is a promising strategy to develop effective therapeutic interventions for metastatic and drug-resistant cancers. Understanding the dynamic mechanisms within the tumor microenvironment (TME) that contribute to heterogeneity and metabolic plasticity is essential to enhance the patients' responsiveness to immune targeted therapies.
View Article and Find Full Text PDFAm J Respir Cell Mol Biol
November 2020
Breast cancer (BCa) proliferates within a complex, three-dimensional microenvironment amid heterogeneous biochemical and biophysical cues. Understanding how mechanical forces within the tumor microenvironment (TME) regulate BCa phenotype is of great interest. We demonstrate that mechanical strain enhanced the proliferation and migration of both estrogen receptor and triple-negative (TNBC) human and mouse BCa cells.
View Article and Find Full Text PDFThe ability of primary tumor cells to invade into adjacent tissues, followed by the formation of local or distant metastasis, is a lethal hallmark of cancer. Recently, locomoting clusters of tumor cells have been identified in numerous cancers and associated with increased invasiveness and metastatic potential. However, how the collective behaviors of cancer cells are coordinated and their contribution to cancer invasion remain unclear.
View Article and Find Full Text PDFThe use of in vitro, engineered surrogates in the field of cancer research is of interest for studies involving mechanisms of growth and metastasis, and response to therapeutic intervention. While biomimetic surrogates better model human disease, their complex composition and dimensionality make them challenging to evaluate in a real-time manner. This feature has hindered the broad implementation of these models, particularly in drug discovery.
View Article and Find Full Text PDFBreast carcinomas are complex, three-dimensional tissues composed of cancer epithelial cells and stromal components, including fibroblasts and extracellular matrix. In vitro models that more faithfully recapitulate this dimensionality and stromal microenvironment should more accurately elucidate the processes driving carcinogenesis, tumor progression, and therapeutic response. Herein, novel in vitro breast carcinoma surrogates, distinguished by a relevant dimensionality and stromal microenvironment, are described and characterized.
View Article and Find Full Text PDFThree dimensional (3D) culture is a more physiologically relevant method to model cell behavior in vitro than two dimensional culture. Carcinomas, including breast carcinomas, are complex 3D tissues composed of cancer epithelial cells and stromal components, including fibroblasts and extracellular matrix (ECM). Yet most in vitro models of breast carcinoma consist only of cancer epithelial cells, omitting the stroma and, therefore, the 3D architecture of a tumor in vivo.
View Article and Find Full Text PDFPrimary cilia are microtubule-based organelles that regulate smoothened-dependent activation of the GLI transcription factors in canonical hedgehog signaling. In many cancers, primary cilia are markedly decreased or absent. The lack of primary cilia may inhibit or alter canonical hedgehog signaling and, thereby, interfere in the cellular responsiveness to modulators of smoothened activity.
View Article and Find Full Text PDFThere is a need for preclinical testing systems that predict the efficacy, safety and pharmacokinetics of cancer therapies better than existing in vitro and in vivo animal models. An approach to the development of predictive in vitro systems is to more closely recapitulate the cellular and spatial complexity of human cancers. One limitation of using current in vitro systems to model cancers is the lack of an appropriately large volume to accommodate the development of this complexity over time.
View Article and Find Full Text PDF