Publications by authors named "Kayla E Wilson"

The maternally methylated KvDMR1 ICR regulates imprinted expression of a cluster of maternally expressed genes on human chromosome 11p15.5. Disruption of imprinting leads to Beckwith-Wiedemann syndrome (BWS), an overgrowth and cancer predisposition condition.

View Article and Find Full Text PDF

The Hippo signaling pathway regulates cellular proliferation and survival, thus exerting profound effects on normal cell fate and tumorigenesis. The pivotal effector of this pathway is YAP1, a transcriptional co-activator amplified in mouse and human cancers where it promotes epithelial-to-mesenchymal transition (EMT) and malignant transformation. The Hippo tumor suppressor pathway has been suggested to inhibit the YAP1 function through serine phosphorylation-induced cytoplasmic retention and degradation.

View Article and Find Full Text PDF

The Hippo signaling pathway regulates cellular proliferation and survival, thus exerting profound effects on normal cell fate and tumorigenesis. Pivotal effectors of this pathway are YAP/TAZ, transcriptional co-activators whose dysfunction contributes to the development of cancer. Complex networks of intracellular and extracellular signaling pathways that modulate YAP and TAZ activities have recently been identified.

View Article and Find Full Text PDF

Genetic and epigenetic alterations have been identified as to contribute directly or indirectly to the generation of transitional cell carcinoma of the urinary bladder (TCC-UB). We have previously found that amplification of chromosome 6p22 is significantly associated with the muscle-invasive rather than superficial TCC-UB. Here, we demonstrated that Sox4, one of the candidate oncogenes located within the chromosome 6p22 amplicon, confers bladder cancer stem cell (CSC) properties.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) accounts for approximately 15-20% of all breast cancer (BC) cases and contributes disproportionately to BC mortality. TAZ, a key transducer of the Hippo pathway, has recently been demonstrated to confer breast cancer stem cell (CSC) traits. However, TAZ target genes and the underlying transcriptional regulatory pathways responsible for the CSC phenomenon remain unknown.

View Article and Find Full Text PDF

The Hippo signaling pathway regulates cellular proliferation and survival, thus exerting profound effects on normal cell fate and tumorigenesis. Pivotal effectors of this pathway are YAP/TAZ, transcriptional co-activators whose dysfunction contributes to epithelial-to-mesenchymal transition and malignant transformation. Therefore, it is of great importance to decipher the mechanisms underlying the regulations of YAP/TAZ at various levels.

View Article and Find Full Text PDF