Decorin-binding protein A (DbpA) of Borrelia burgdorferi mediates bacterial adhesion to heparin and dermatan sulfate associated with decorin. Lysines K82, K163, and K170 of DbpA are known to be important for in vitro interaction with decorin, and the DbpA structure, initially solved by nuclear magnetic resonance (NMR) spectroscopy, suggests these lysine residues colocalize in a pocket near the C terminus of the protein. In the current study, we solved the structure of DbpA from B.
View Article and Find Full Text PDFJ Microbiol Methods
September 2008
The results from bacterial strain recovery efforts following hurricanes Katrina and Rita are reported. Over 90% of strains frozen in 10% skim milk were recovered whereas various recovery rates were observed for glycerol-stored stocks (56% and 94% of Escherichia coli, depending upon the laboratory). These observations led to a viability comparison of Streptococcus pyogenes, Campylobacter jejuni, Borrelia burgdorferi, Salmonella enterica subsp.
View Article and Find Full Text PDFBackground: Decorin-binding proteins (Dbps) A and B of Borrelia burgdorferi, the agent of Lyme disease, are surface-exposed lipoproteins that presumably bind to the extracellular matrix proteoglycan, decorin. B. burgdorferi infects various tissues including the bladder, heart, joints, skin and the central nervous system, and the ability of B.
View Article and Find Full Text PDFFrancisella tularensis is a gram-negative intracellular bacterium and the causative agent of the zoonotic disease tularemia. F. tularensis is a category A select agent and thus a potential agent of bioterrorism.
View Article and Find Full Text PDFSyphilis, a sexually transmitted infection caused by the spirochetal bacterium Treponema pallidum, remains a global public health problem. T. pallidum is believed to be an extracellular pathogen and, as such, the identification of T.
View Article and Find Full Text PDFFrancisella tularensis is a gram-negative coccobacillus that is capable of causing severe, fatal disease in a number of mammalian species, including humans. Little is known about the proteins that are surface exposed on the outer membrane (OM) of F. tularensis, yet identification of such proteins is potentially fundamental to understanding the initial infection process, intracellular survival, virulence, immune evasion and, ultimately, vaccine development.
View Article and Find Full Text PDFBorrelia burgdorferi (Bb), the agent of Lyme disease, is a zoonotic spirochetal bacterium that depends on arthropod (Ixodes ticks) and mammalian (rodent) hosts for its persistence in nature. The quest to identify borrelial genes responsible for Bb's parasitic dependence on these two diverse hosts has been hampered by limitations in the ability to genetically manipulate virulent strains of Bb. Despite this constraint, we report herein the inactivation and genetic complementation of a linear plasmid-25-encoded gene (bbe16) to assess its role in the virulence, pathogenesis, and survival of Bb during its natural life cycle.
View Article and Find Full Text PDFA structure-to-function approach was undertaken to gain insights into the potential function of the 32-kDa membrane lipoprotein (Tp32) of Treponema pallidum, the syphilis bacterium. The crystal structure of rTp32 (determined at a resolution of 1.85 A) shows that the organization of rTp32 is similar to other periplasmic ligand-binding proteins (PLBPs), in that it consists of two alpha/beta domains, linked by two crossovers, with a binding pocket between them.
View Article and Find Full Text PDFluxS mutants of Borrelia burgdorferi strain 297 naturally colonized their arthropod (Ixodes scapularis) vector, were maintained in ticks throughout the molting process (larvae to nymphs), were tick transmitted to uninfected mice, and elicited histopathology in mice indistinguishable from that induced by wild-type B. burgdorferi.
View Article and Find Full Text PDFA 38-kDa lipoprotein of Treponema pallidum (Tp38) was predicted to be a periplasmic sugar-binding protein based on its sequence similarity to the glucose/galactose-binding (MglB) protein of Escherichia coli (P. S. Becker, D.
View Article and Find Full Text PDFThe Mlp (multicopy lipoproteins) family is one of many paralogous protein families in Borrelia burgdorferi. To examine the extent to which the 10 members of the Mlp family in B. burgdorferi strain 297 might be differentially regulated, antibodies specific for each of the Mlps were developed and used to analyze the protein expression profiles of individual Mlps when B.
View Article and Find Full Text PDFThe luxS gene product is an integral component of LuxS/autoinducer-2 (AI-2) quorum-sensing systems in bacteria. A putative luxS gene was expressed at comparable levels by Borrelia burgdorferi strain 297 cultivated either in vitro or in dialysis membrane chambers implanted in rat peritoneal cavities. Although the borrelial luxS gene functionally complemented a LuxS deficiency in Escherichia coli DH5 alpha, AI-2-like activity could not be detected within B.
View Article and Find Full Text PDFThe mtr (multiple transferable resistance) system of Neisseria gonorrhoeae mediates resistance of gonococci to structurally diverse hydrophobic agents (HAs) through an energy-dependent efflux process. Recently, complete or partial ORFs that encode membrane proteins (MtrC, MtrD, MtrE) forming an efflux pump responsible for removal of HAs from gonococci were identified and appeared to constitute a single transcriptional unit. In this study, the complete nucleotide sequence of the mtrD gene was determined, permitting the characterization of the MtrD protein.
View Article and Find Full Text PDF