A molecular catalyst attached to an electrode surface can offer the advantages of both homogeneous and heterogeneous catalysis. Unfortunately, some molecular catalysts constrained to a surface lose much or all of their solution performance. In contrast, we found that when a small molecule [2Fe-2S] catalyst is incorporated into metallopolymers of the form PDMAEMA--[2Fe-2S] (PDMAEMA = poly(2-dimethylamino)ethyl methacrylate) and adsorbed to the surface, the observed rate of hydrogen production increases to > 10 s per active site with lower overpotential, increased lifetime, and tolerance to oxygen.
View Article and Find Full Text PDFElectrocatalytic generation of H is challenging in neutral pH water, where high catalytic currents for the hydrogen evolution reaction (HER) are particularly sensitive to the proton source and solution characteristics. A tris(hydroxymethyl)aminomethane (TRIS) solution at pH 7 with a [2Fe-2S]-metallopolymer electrocatalyst gave catalytic current densities around two orders of magnitude greater than either a more conventional sodium phosphate solution or a potassium chloride (KCl) electrolyte solution. For a planar polycrystalline Pt disk electrode, a TRIS solution at pH 7 increased the catalytic current densities for H generation by 50 mA/cm at current densities over 100 mA/cm compared to a sodium phosphate solution.
View Article and Find Full Text PDFThe tetrafluorinated derivative of 7,7,8,8-tetracyanoquinodimethane (TCNQ), 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ), is of interest for charge transfer complex formation and as a p-dopant in organic electronic materials. Fourier transform infrared (FTIR) spectroscopy is commonly employed to understand the redox properties of F4TCNQ in the matrix of interest; specifically, the ν(C≡N) region of the F4TCNQ spectrum is exquisitely sensitive to the nature of the charge transfer between F4TCNQ and its matrix. However, little work has been done to understand how these vibrational modes change in the presence of possible acid/base chemistry.
View Article and Find Full Text PDFReviewed herein is the development of novel polymer-supported [2Fe-2S] catalyst systems for electrocatalytic and photocatalytic hydrogen evolution reactions. [FeFe] hydrogenases are the best known naturally occurring metalloenzymes for hydrogen generation, and small-molecule, [2Fe-2S]-containing mimetics of the active site (H-cluster) of these metalloenzymes have been synthesized for years. These small [2Fe-2S] complexes have not yet reached the same capacity as that of enzymes for hydrogen production.
View Article and Find Full Text PDFSmall-molecule catalysts inspired by the active sites of [FeFe]-hydrogenase enzymes have long struggled to achieve fast rates of hydrogen evolution, long-term stability, water solubility, and oxygen compatibility. We profoundly improved on these deficiencies by grafting polymers from a metalloinitiator containing a [2Fe-2S] moiety to form water-soluble poly(2-dimethylamino)ethyl methacrylate metallopolymers () using atom transfer radical polymerization (ATRP). This study illustrates the critical role of the polymer composition in enhancing hydrogen evolution and aerobic stability by comparing the catalytic activity of with a nonionic water-soluble metallopolymer based on poly(oligo(ethylene glycol) methacrylate) prepared via ATRP () with the same [2Fe-2S] metalloinitiator.
View Article and Find Full Text PDFElectrocatalytic [FeFe]-hydrogenase mimics for the hydrogen evolution reaction (HER) generally suffer from low activity, high overpotential, aggregation, oxygen sensitivity, and low solubility in water. By using atom-transfer radical polymerization (ATRP), a new class of [FeFe]-metallopolymers with precise molar mass, defined composition, and low polydispersity, has been prepared. The synthetic methodology introduced here allows facile variation of polymer composition to optimize the [FeFe] solubility, activity, and long-term chemical and aerobic stability.
View Article and Find Full Text PDF