Publications by authors named "Kayla Conner"

Alveolar macrophages (AMs) are key mediators of lung function and are potential targets for therapies during respiratory infections. TGFβ is an important regulator of AM differentiation and maintenance, but how TGFβ directly modulates the innate immune responses of AMs remains unclear. This shortcoming prevents effective targeting of AMs to improve lung function in health and disease.

View Article and Find Full Text PDF

Despite advances in breast cancer screening and treatment, prognosis for metastatic disease remains dismal at 30% five-year survival. This is due, in large, to the failure of current therapeutics to target properties unique to metastatic cells. One of the drivers of metastasis is miR-10b, a small noncoding RNA implicated in cancer cell invasion, migration, viability, and proliferation.

View Article and Find Full Text PDF

The DNA dependent protein kinase (DNA-PK) initiates non-homologous recombination (NHEJ), the predominate DNA double-strand break (DSBR) pathway in higher vertebrates. It has been known for decades that the enzymatic activity of DNA-PK [that requires its three component polypeptides, Ku70, Ku80 (that comprise the DNA-end binding Ku heterodimer), and the catalytic subunit (DNA-PKcs)] is present in humans at 10-50 times the level observed in other mammals. Here, we show that the high level of DNA-PKcs protein expression appears evolutionarily in mammals between prosimians and higher primates.

View Article and Find Full Text PDF

Macrophages play a crucial role in eliminating respiratory pathogens. Both pulmonary resident alveolar macrophages (AMs) and recruited macrophages contribute to detecting, responding to, and resolving infections in the lungs. Despite their distinct functions, it remains unclear how these macrophage subsets regulate their responses to infection, including how activation by the cytokine IFN-γ is regulated.

View Article and Find Full Text PDF

Macrophages play a crucial role in eliminating respiratory pathogens. Both pulmonary resident alveolar macrophages (AMs) and recruited macrophages contribute to detecting, responding to, and resolving infections in the lungs. Despite their distinct functions, it remains unclear how these macrophage subsets regulate their responses to infection, including how activation by the cytokine IFNγ is regulated.

View Article and Find Full Text PDF

TRA-1-60 (TRA) is an established transcription factor of embryonic signaling and a well-known marker of pluripotency. It has been implicated in tumorigenesis and metastases, is not expressed in differentiated cells, which makes it an appealing biomarker for immunopositron emission tomography (immunoPET) imaging and radiopharmaceutical therapy (RPT). Herein, we explored the clinical implications of TRA in prostate cancer (PCa), examined the potential of TRA-targeted PET to specifically image TRA cancer stem cells (CSCs) and assessed response to the selective ablation of PCa CSCs using TRA-targeted RPT.

View Article and Find Full Text PDF

Introduction: Placental infection and inflammation are risk factors for adverse pregnancy outcomes, including preterm labor. However, the mechanisms underlying these outcomes are poorly understood.

Methods: To study this response, we have employed a pregnant mouse model of placental infection caused by the bacterial pathogen Listeria monocyogenes, which infects the human placenta.

View Article and Find Full Text PDF

() is a bacterial pathogen that causes listeriosis in immunocompromised individuals, particularly pregnant women. Several virulence factors support the intracellular lifecycle of and facilitate cell-to-cell spread, allowing it to occupy multiple niches within the host and cross-protective barriers, including the placenta. One family of virulence factors, internalins, contributes to pathogenicity by inducing specific uptake and conferring tissue tropism.

View Article and Find Full Text PDF
Article Synopsis
  • Identifying and isolating contagious individuals, along with quarantining close contacts, is essential for controlling the spread of COVID-19 through large-scale testing, especially for asymptomatic carriers.
  • Michigan State University has implemented a successful early detection program since fall 2020, utilizing a cost-effective saliva testing method that allows for large sample volumes and easy adaptability to supply shortages.
  • The techniques used in this program can serve as a model for other institutions to improve their preparedness for future viral outbreaks that can be detected in saliva.
View Article and Find Full Text PDF

Identifying the mechanisms mediating cisplatin response is essential for improving patient response. Previous research has identified base excision repair (BER) and mismatch repair (MMR) activity in sensitizing cells to cisplatin. Cisplatin forms DNA adducts including interstrand cross-links (ICLs) that distort the DNA helix, forcing adjacent cytosines to become extrahelical.

View Article and Find Full Text PDF

Human papillomavirus (HPV) is associated with the development of head and neck squamous cell carcinomas (HNSC). Cisplatin is used to treat HNSC and induces DNA adducts including interstrand crosslinks (ICLs). Previous reports have shown that HPV positive HNSC patients respond better to cisplatin therapy.

View Article and Find Full Text PDF

The mycolate flippase MmpL3 has been the proposed target for multiple inhibitors with diverse chemical scaffolds. This diversity in chemical scaffolds has made it difficult to predict compounds that inhibit MmpL3 without whole-genome sequencing of isolated resistant mutants. Here, we describe the identification of four new inhibitors that select for resistance mutations in Using these resistant mutants, we conducted a targeted whole-cell phenotypic screen of 163 novel growth inhibitors for differential growth inhibition of wild-type compared to the growth of a pool of 24 unique mutants.

View Article and Find Full Text PDF

The 5'-3' structure-specific endonuclease ERCC1/XPF (Excision Repair Cross-Complementation Group 1/Xeroderma Pigmentosum group F) plays critical roles in the repair of cisplatin-induced DNA damage. As such, it has been identified as a potential pharmacological target for enhancing clinical response to platinum-based chemotherapy. The goal of this study was to follow up on our previous identification of the compound NSC143099 as a potent inhibitor of ERCC1/XPF activity by performing an in silico screen to identify structural analogues that could inhibit ERCC1/XPF activity in vitro and in vivo.

View Article and Find Full Text PDF