Small-animal physiology studies are typically complicated, but the level of complexity is greatly increased when performing live-animal X-ray imaging studies at synchrotron and compact light sources. This group has extensive experience in these types of studies at the SPring-8 and Australian synchrotrons, as well as the Munich Compact Light Source. These experimental settings produce unique challenges.
View Article and Find Full Text PDFThe complexity of lung diseases makes pre-clinical in vivo respiratory research in mouse lungs of great importance for a better understanding of physiology and therapeutic effects. Synchrotron-based imaging has been successfully applied to lung research studies, however longitudinal studies can be difficult to perform due to limited facility access. Laboratory-based x-ray sources, such as inverse Compton x-ray sources, remove this access limitation and opens up new possibilities for pre-clinical small-animal lung research at high spatial and temporal resolution.
View Article and Find Full Text PDFWe describe the first dynamic and the first in vivo X-ray imaging studies successfully performed at a laser-undulator-based compact synchrotron light source. The X-ray properties of this source enable time-sequence propagation-based X-ray phase-contrast imaging. We focus here on non-invasive imaging for respiratory treatment development and physiological understanding.
View Article and Find Full Text PDFWe demonstrate the applicability of propagation-based X-ray phase-contrast imaging at a laser-assisted compact light source with known phantoms and the lungs and airways of a mouse. The Munich Compact Light Source provides a quasi-monochromatic beam with partial spatial coherence, and high flux relative to other non-synchrotron sources (up to 10 ph/s). In our study we observe significant edge-enhancement and quantitative phase-retrieval is successfully performed on the known phantom.
View Article and Find Full Text PDF