Publications by authors named "Kaycey Pearce"

Persistent activity of protein kinase M (PKM), the truncated form of protein kinase C (PKC), can maintain long-term changes in synaptic strength in many systems, including the hermaphrodite marine mollusk, Moreover, different types of long-term facilitation (LTF) in cultured sensorimotor synapses rely on the activities of different PKM isoforms in the presynaptic sensory neuron and postsynaptic motor neuron. When the atypical PKM isoform is required, the kidney and brain expressed adaptor protein (KIBRA) is also required. Here, we explore how this isoform specificity is established.

View Article and Find Full Text PDF

Zebrafish larvae have several biological features that make them useful for cellular investigations of the mechanisms underlying learning and memory. Of particular interest in this regard is a rapid escape, or startle, reflex possessed by zebrafish larvae; this reflex, the C-start, is mediated by a relatively simple neuronal circuit and exhibits habituation, a non-associative form of learning. Here we demonstrate a rapid form of habituation of the C-start to touch that resembles the previously reported rapid habituation induced by auditory or vibrational stimuli.

View Article and Find Full Text PDF

The precise nature of the engram, the physical substrate of memory, remains uncertain. Here, it is reported that RNA extracted from the central nervous system of given long-term sensitization (LTS) training induced sensitization when injected into untrained animals; furthermore, the RNA-induced sensitization, like training-induced sensitization, required DNA methylation. In cellular experiments, treatment with RNA extracted from trained animals was found to increase excitability in sensory neurons, but not in motor neurons, dissociated from naïve animals.

View Article and Find Full Text PDF

Previously, we reported that long-term memory (LTM) in can be reinstated by truncated (partial) training following its disruption by reconsolidation blockade and inhibition of PKM (Chen et al., 2014). Here, we report that LTM can be induced by partial training after disruption of original consolidation by protein synthesis inhibition (PSI) begun shortly after training.

View Article and Find Full Text PDF

The cellular and molecular basis of long-term memory in vertebrates remains poorly understood. Knowledge regarding long-term memory has been impeded by the enormous complexity of the vertebrate brain, particularly the mammalian brain, as well as by the relative complexity of the behavioral alterations examined in most studies of long-term memory in vertebrates. Here, we demonstrate a long-term form of nonassociative learning-specifically, long-term habituation (LTH)-of a simple reflexive escape response, the C-start, in zebrafish larvae.

View Article and Find Full Text PDF

Long-term memory (LTM) is believed to be stored in the brain as changes in synaptic connections. Here, we show that LTM storage and synaptic change can be dissociated. Cocultures of Aplysia sensory and motor neurons were trained with spaced pulses of serotonin, which induces long-term facilitation.

View Article and Find Full Text PDF

When an animal is reminded of a prior experience and shortly afterward treated with a protein synthesis inhibitor, the consolidated memory for the experience can be disrupted; by contrast, protein synthesis inhibition without prior reminding commonly does not disrupt long-term memory [1-3]. Such results imply that the reminding triggers reconsolidation of the memory. Here, we asked whether the behavioral and synaptic changes associated with the memory for long-term sensitization (LTS) of the siphon-withdrawal reflex in the marine snail Aplysia californica [4, 5] could undergo reconsolidation.

View Article and Find Full Text PDF

The zebrafish larva has been a valuable model system for genetic and molecular studies of development. More recently, biologists have begun to exploit the surprisingly rich behavioral repertoire of zebrafish larvae to investigate behavior. One prominent behavior exhibited by zebrafish early in development is a rapid escape reflex (the C-start).

View Article and Find Full Text PDF

How the brain maintains long-term memories is one of the major outstanding questions in modern neuroscience. Evidence from mammalian studies indicates that activity of a protein kinase C (PKC) isoform, protein kinase Mζ (PKMζ), plays a critical role in the maintenance of long-term memory. But the range of memories whose persistence depends on PKMζ, and the mechanisms that underlie the effect of PKMζ on long-term memory, remain obscure.

View Article and Find Full Text PDF

Although habituation is possibly the simplest form of learning, we still do not fully understand the neurobiological basis of habituation in any organism. To advance the goal of a comprehensive understanding of habituation, we have studied long-term habituation (LTH) of the gill-withdrawal reflex (GWR) in the marine snail Aplysia californica. Previously, we showed that habituation of the GWR in a reduced preparation lasts for up to 12 h, and depends on protein synthesis, as well as activation of protein phosphatases 1 and 2A and postsynaptic glutamate receptors.

View Article and Find Full Text PDF

Previous findings indicate that synaptic facilitation, a cellular mechanism underlying sensitization of the siphon withdrawal response (SWR) in Aplysia, depends on a cascade of postsynaptic events, including activation of inositol triphosphate (IP3) receptors and release of Ca2+ from postsynaptic intracellular stores. These findings suggest that phospholipase C (PLC), the enzyme that catalyzes IP3 formation, may play an important role in postsynaptic signaling during facilitation and learning in Aplysia. Using the PLC inhibitor U73122, we found that PLC activity is required for synaptic facilitation following a 10-min treatment with 5-HT, as measured at 20 min after 5-HT washout.

View Article and Find Full Text PDF