There is a growing interest in new semiconductor nanostructures for future high-density high-performance flexible electronic devices. Two-dimensional conjugated microporous polymers (2D-CMPs) are promising candidates because of their inherent optoelectronic properties. Here, we are reporting a novel donor-acceptor type 2D-CMP based on Pyrene and Isoindigo (PI) for a potential nano-scale charge-trapping memory application.
View Article and Find Full Text PDFThe development of n-type organic semiconductors has evolved significantly slower in comparison to that of p-type organic semiconductors mainly due to the lack of electron-deficient building blocks with stability and processability. However, to realize a variety of organic optoelectronic devices, high-performance n-type polymer semiconductors are essential. Herein, conjugated microporous polymers (CMPs) comprising isoindigo acceptor units linked to benzene or pyrene donor units (BI and PI) showing n-type semiconducting behavior are reported.
View Article and Find Full Text PDFProton-exchange membrane fuel cells are promising energy devices for a sustainable future due to green features, high power density, and mild operating conditions. A facile proton-conducting membrane plays a pivotal role to boost the efficiency of fuel cells, and hence focused research in this area is highly desirable. Major issues associated with the successful example of Nafion resulted in the search for alternate proton conducting materials.
View Article and Find Full Text PDFCharge-transfer complexes have been an inspiration to develop many functional soft materials. However, most of those studies have focused on solution based assemblies wherein the explicit control of solvents and their polarity are crucial. In this context, we explore an efficient and stable charge transfer liquid using a solvent-free liquid dialkoxynaphthalene donor and a naphthalenediimide acceptor.
View Article and Find Full Text PDFCorrection for 'Cascade energy transfer and tunable emission from nanosheet hybrids: locating acceptor molecules through chiral doping' by Goudappagouda et al., Chem. Commun.
View Article and Find Full Text PDFEfficient water splitting photocatalysts are an energetically demanding and cost-effective method for generating renewable energy. Significant research has been reported to advance this approach. However, the use of organic photocatalysts and the presence of residual catalysts trapped in the porous frameworks present major concerns about the efficiency of this strategy.
View Article and Find Full Text PDFOrganic phosphors have been widely explored with an understanding that crystalline molecular ordering is a requisite for enhanced intersystem crossing. In this context, we explored the room-temperature phosphorescence features of a solvent-free organic liquid phosphor in air. While alkyl chain substitution varied the physical states of the bromonaphthalimides, the phosphorescence remained unaltered for the solvent-free liquid in air.
View Article and Find Full Text PDFLight harvesting donor-acceptor assemblies are indispensable to efficiently tap photons. In an attempt to improve the light harvesting efficiency of an acceptor doped assembly, we design and synthesize a donor-acceptor-donor triad which exhibits an exceptional intramolecular energy transfer with excellent efficiency. Moreover, a facile cascade energy transfer (energy funnelling) is observed in the presence of a series of second acceptors (63-91% efficiency) with tunable emission colours.
View Article and Find Full Text PDF