Molecular reactivity is determined by the energy levels and spatial extent of the frontier orbitals. Orbital tomography based on angle-resolved photoelectron spectroscopy is an elegant method to study the electronic structure of organic adsorbates, however, it is conventionally restricted to systems with one single rotational domain. In this work, we extend orbital tomography to systems with multiple rotational domains.
View Article and Find Full Text PDFThe precise knowledge of the electric field in close proximity to metallic and dielectric surfaces is a prerequisite for pump-probe experiments aiming at the control of dynamic surface processes. We describe a model to reconstruct this electric field in immediate surface proximity from data taken in photoelectron THz-streaking experiments with an angle-resolved electron analyzer. Using Monte-Carlo simulations we are able to simulate streaking experiments on arbitrary surfaces with a variety of initial electron momentum distributions and to reconstruct the effective electric field at the surface.
View Article and Find Full Text PDFIn recent years, the oxygen evolution reaction (OER) has attracted increased research interest due to its crucial role in electrochemical energy conversion devices for renewable energy applications. The vast majority of OER catalyst materials investigated are metal oxides of various compositions. The experimental results obtained on such materials strongly suggest the existence of a fundamental and universal correlation between the oxygen evolution activity and the corrosion of metal oxides.
View Article and Find Full Text PDF