Publications by authors named "Kay Schneitz"

We present a new set of computational tools that enable accurate and widely applicable 3D segmentation of nuclei in various 3D digital organs. We have developed an approach for ground truth generation and iterative training of 3D nuclear segmentation models, which we applied to popular CellPose, PlantSeg and StarDist algorithms. We provide two high-quality models trained on plant nuclei that enable 3D segmentation of nuclei in datasets obtained from fixed or live samples, acquired from different plant and animal tissues, and stained with various nuclear stains or fluorescent protein-based nuclear reporters.

View Article and Find Full Text PDF

Regulation of microtubule dynamics is crucial during key developmental transitions such as gametogenesis, fertilization, embryogenesis, and seed formation, where cells undergo rapid changes in shape and function. In plants, katanin plays an essential role in microtubule dynamics. This study investigates two seed developmental mutants in , named (, ) and (), which are characterized by round seeds, dwarfism, and fertility defects.

View Article and Find Full Text PDF

Tissue morphogenesis remains poorly understood. In plants, a central problem is how the 3D cellular architecture of a developing organ contributes to its final shape. We address this question through a comparative analysis of ovule morphogenesis, taking advantage of the diversity in ovule shape across angiosperms.

View Article and Find Full Text PDF

The 1991 review paper by Coen and Meyerowitz on the control of floral organ development set out the evidence available at that time, which led to the now famous ABC model of floral organ identity control. The authors summarised the genetic and molecular analyses that had been carried out in a relatively short time by several laboratories, mainly in and . The work was a successful example of how systematic genetic and molecular analysis can decipher the mechanism that controls a developmental process in plants.

View Article and Find Full Text PDF

Intercellular communication plays a central role in organogenesis. Tissue morphogenesis in Arabidopsis (Arabidopsis thaliana) requires signaling mediated by a cell surface complex containing the atypical receptor kinase STRUBBELIG (SUB) and the multiple C2 domains and transmembrane region protein QUIRKY (QKY). QKY is required to stabilize SUB at the plasma membrane.

View Article and Find Full Text PDF

In spermatophytes the sporophytic (diploid) and the gametophytic (haploid) generations co-exist in ovules, and the coordination of their developmental programs is of pivotal importance for plant reproduction. To achieve efficient fertilization, the haploid female gametophyte and the diploid ovule structures must coordinate their development to form a functional and correctly shaped ovule. WUSCHEL-RELATED HOMEOBOX (WOX) genes encode a family of transcription factors that share important roles in a wide range of processes throughout plant development.

View Article and Find Full Text PDF

Positional information is a central concept in developmental biology. In developing organs, positional information can be idealized as a local coordinate system that arises from morphogen gradients controlled by organizers at key locations. This offers a plausible mechanism for the integration of the molecular networks operating in individual cells into the spatially coordinated multicellular responses necessary for the organization of emergent forms.

View Article and Find Full Text PDF

Signaling pathways rely on the precise control of protein-protein interactions. Therefore, it is essential to be able to investigate such interactions with spatiotemporal resolution and in live cells. Here we describe a microscope-based fluorescence spectrometry technique to investigate homotypic interactions between GFP-labeled fusion proteins in a rapid and reproducible fashion using fluorescence anisotropy.

View Article and Find Full Text PDF

A fundamental question in biology concerns how molecular and cellular processes become integrated during morphogenesis. In plants, characterization of 3D digital representations of organs at single-cell resolution represents a promising approach to addressing this problem. A major challenge is to provide organ-centric spatial context to cells of an organ.

View Article and Find Full Text PDF

Cell wall remodeling is essential for the control of growth and development as well as the regulation of stress responses. However, the underlying cell wall monitoring mechanisms remain poorly understood. Regulation of root hair fate and flower development in Arabidopsis thaliana requires signaling mediated by the atypical receptor kinase STRUBBELIG (SUB).

View Article and Find Full Text PDF

A fundamental question in biology is how morphogenesis integrates the multitude of processes that act at different scales, ranging from the molecular control of gene expression to cellular coordination in a tissue. Using machine-learning-based digital image analysis, we generated a three-dimensional atlas of ovule development in , enabling the quantitative spatio-temporal analysis of cellular and gene expression patterns with cell and tissue resolution. We discovered novel morphological manifestations of ovule polarity, a new mode of cell layer formation, and previously unrecognized subepidermal cell populations that initiate ovule curvature.

View Article and Find Full Text PDF

Quantitative analysis of plant and animal morphogenesis requires accurate segmentation of individual cells in volumetric images of growing organs. In the last years, deep learning has provided robust automated algorithms that approach human performance, with applications to bio-image analysis now starting to emerge. Here, we present PlantSeg, a pipeline for volumetric segmentation of plant tissues into cells.

View Article and Find Full Text PDF
Article Synopsis
  • Plants are crucial for life and show a vast diversity, and this study focuses on the model plant Arabidopsis thaliana by providing a detailed atlas of its transcriptomes, proteomes, and phosphoproteomes from 30 different tissues.
  • The research reveals that there are over 18,000 genes expressed as proteins, with variations in expression levels and over 43,000 phosphorylation sites documented.
  • The findings enable further exploration in areas such as identifying proteins from short open-reading frames, understanding protein production regulation, and recognizing tissue-specific protein complexes, all through accessible data in the ProteomicsDB and ATHENA databases.
View Article and Find Full Text PDF

Fertilization of an egg cell by more than one sperm cell can produce viable progeny in a flowering plant.

View Article and Find Full Text PDF

Plant cells are encased in a semi-rigid cell wall of complex build. As a consequence, cell wall remodeling is essential for the control of growth and development as well as the regulation of abiotic and biotic stress responses. Plant cells actively sense physico-chemical changes in the cell wall and initiate corresponding cellular responses.

View Article and Find Full Text PDF

Background: A salient topic in developmental biology relates to the molecular and genetic mechanisms that underlie tissue morphogenesis. Modern quantitative approaches to this central question frequently involve digital cellular models of the organ or tissue under study. The ovules of the model species have long been established as a model system for the study of organogenesis in plants.

View Article and Find Full Text PDF

Divergence among duplicate genes is one of the important sources of evolutionary innovation. But, the contribution of duplicate divergence to variation in Arabidopsis accessions is sparsely known. Recently, we studied the role of a cell wall localized protein, ZERZAUST (ZET), in Landsberg (L) accession, lack of which results in aberrant plant morphology.

View Article and Find Full Text PDF

Signaling mediated by cell surface receptor kinases is central to the coordination of growth patterns during organogenesis. Receptor kinase signaling is in part controlled through endocytosis and subcellular distribution of the respective receptor kinase. For the majority of plant cell surface receptors, the underlying trafficking mechanisms are not characterized.

View Article and Find Full Text PDF

Tissue morphogenesis critically depends on the coordination of cellular growth patterns. In plants, many organs consist of clonally distinct cell layers, such as the epidermis, whose cells undergo divisions that are oriented along the plane of the layer. The developmental control of such planar growth is poorly understood.

View Article and Find Full Text PDF

Plants encode a unique group of papain-type cysteine endopeptidases (CysEP) characterized by a C-terminal KDEL endoplasmic reticulum retention signal (KDEL-CysEP) and an unusually broad substrate specificity. The three Arabidopsis KDEL-CysEPs (AtCEP1, AtCEP2, and AtCEP3) are differentially expressed in vegetative and generative tissues undergoing programmed cell death (PCD). While KDEL-CysEPs have been shown to be implicated in the collapse of tissues during PCD, roles of these peptidases in processes other than PCD are unknown.

View Article and Find Full Text PDF

Orchestration of cellular behavior in plant organogenesis requires integration of intercellular communication and cell wall dynamics. The underlying signaling mechanisms are poorly understood. Tissue morphogenesis in depends on the receptor-like kinase STRUBBELIG.

View Article and Find Full Text PDF

Flowers are central to sexual reproduction in plants. The study of floral development proved tremendously successful in obtaining key insight into processes, such as fate determination, pattern formation, and growth regulation. Recent advances relate to the complex mechanisms underlying the crosstalk between phytohormone signaling, cell and tissue mechanics, and regulatory gene networks that positions floral buds at the apex and directs floral specification, initiation and outgrowth.

View Article and Find Full Text PDF

Tissue morphogenesis in plants requires communication between cells, a process involving the trafficking of molecules through plasmodesmata (PD). PD conductivity is regulated by endogenous and exogenous signals. However, the underlying signaling mechanisms remain enigmatic.

View Article and Find Full Text PDF

Analysis of gene activity with high spatial resolution is a prerequisite for deciphering regulatory networks which underlie developmental programs. Over many years, in situ hybridization has become the gold standard for the identification of in vivo expression patterns of endogenous mRNAs. Nonetheless, the method has several limitations, and the detection of lowly expressed transcripts is still a challenge.

View Article and Find Full Text PDF