Publications by authors named "Kay Samuel"

Background: Metabolic dysfunction-associated steatotic liver disease (MASLD), characterised by hepatic lipid accumulation, causes inflammation and oxidative stress accompanied by cell damage and fibrosis. Liver injury (LI) is also frequently reported in patients hospitalised with coronavirus disease 2019 (COVID-19), while pre-existing MASLD increases the risk of LI and the development of COVID-19-associated cholangiopathy. Mechanisms of injury at the cellular level remain unclear, but it may be significant that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which causes COVID-19, uses angiotensin-converting expression enzyme 2 (ACE2), a key regulator of the 'anti-inflammatory' arm of the renin-angiotensin system, for viral attachment and host cell invasion.

View Article and Find Full Text PDF

The gut-liver axis is defined by dietary and environmental communication between the gut, microbiome and the liver with its redox and immune systems, the overactivation of which can lead to hepatic injury. We used media preconditioning to mimic some aspects of the enterohepatic circulation by treating the human Caco-2 intestinal epithelial cell line with 5, 10 and 20 mM paracetamol (N-acetyl-para-aminophenol; APAP) for 24 h, after which cell culture supernatants were transferred to differentiated human hepatic HepaRG cells for a further 24 h. Cell viability was assessed by mitochondrial function and ATP production, while membrane integrity was monitored by cellular-based impedance.

View Article and Find Full Text PDF

Pulmonary hypertension (PH) is a progressive disease characterized by elevated artery pressures and pulmonary vascular resistance. Underlying mechanisms comprise endothelial dysfunction, pulmonary artery remodeling and vasoconstriction. Several studies have shown evidence of the critical role of oxidative stress in PH pathophysiology.

View Article and Find Full Text PDF

Background Aims: Mesenchymal stromal cells (MSCs) isolated from various tissues are under investigation as cellular therapeutics in a wide range of diseases. It is appreciated that the basic biological functions of MSCs vary depending on tissue source. However, in-depth comparative analyses between MSCs isolated from different tissue sources under Good Manufacturing Practice (GMP) conditions are lacking.

View Article and Find Full Text PDF

A novel strain of coronoviridae (SARS-CoV-2) was reported in Wuhan China in December 2019. Initially, infection presented with a broad spectrum of symptoms which typically included muscle aches, fever, dry cough, and shortness of breath. SARS-CoV-2 enters cells via ACE2 receptors which are abundant throughout the respiratory tract.

View Article and Find Full Text PDF

Fully differentiated HepaRG™ cells are the hepatic cell line of choice for study in toxicology and drug trials. They are derived from a hepatoblast-like progenitor (HepaRG-P) that differentiates into a coculture of hepatocyte-like and cholangiocyte-like cells. This process that requires 2 weeks of proliferation followed by 2 weeks of differentiation using dimethyl sulfoxide (DMSO) can be time consuming and costly.

View Article and Find Full Text PDF

Gene expression analysis by quantitative real-time polymerase chain reaction (RT-qPCR) is routinely used in biomedical studies. The reproducibility and reliability of the data fundamentally depends on experimental design and data interpretation. Despite the wide application of this assay, there is significant variation in the validation process of gene expression data from research laboratories.

View Article and Find Full Text PDF

Islet transplantation is an efficacious therapy for type 1 diabetes; however, islets from multiple donor pancreata are required, and a gradual attrition in transplant function is seen. Here, we manufactured human umbilical cord perivascular mesenchymal stromal cells (HUCPVCs) to Good Manufacturing Practice (GMP) standards. HUCPVCs showed a stable phenotype while undergoing rapid ex vivo expansion at passage 2 (p2) to passage 4 (p4) and produced proregenerative factors, strongly suppressing T cell responses in the resting state and in response to inflammation.

View Article and Find Full Text PDF

There are a variety of end-point assays and techniques available to monitor hepatic cell cultures and study toxicity within in vitro models. These commonly focus on one aspect of cell metabolism and are often destructive to cells. Impedance-based cellular assays (IBCAs) assess biological functions of cell populations in real-time by measuring electrical impedance, which is the resistance to alternating current caused by the dielectric properties of proliferating of cells.

View Article and Find Full Text PDF
Article Synopsis
  • Dendritic cells (DC) are key immune cells that connect innate and adaptive immune responses, and their development is influenced by vitamin D, which is linked to autoimmune diseases.
  • The study explored how vitamin D affects mouse-derived dendritic cells (CD11c BMDC) by analyzing gene expression, finding that vitamin D increases CD31 expression, which hampers DC's ability to activate T cells.
  • Higher CD31 levels in DC lead to shorter interaction times with CD4 T cells, reducing the effectiveness of T cell priming, a result confirmed in both mouse and human DC studies.
View Article and Find Full Text PDF

Chlorpromazine (CPZ) is a neuroleptic drug and prototype compound used to study intrahepatic cholestasis. The exact mechanisms of CPZ induced cholestasis remain unclear. Rat hepatocytes, or a sandwich culture of rat and human hepatocytes, have been the most commonly used models for studying CPZ toxicity in vitro.

View Article and Find Full Text PDF

Dysfunction of cell-cell tight junction (TJ) adhesions is a major feature in the pathogenesis of various diseases. Liver TJs preserve cellular polarity by delimiting functional bile-canalicular structures, forming the blood-biliary barrier. In acetaminophen-hepatotoxicity, the mechanism by which tissue cohesion and polarity are affected remains unclear.

View Article and Find Full Text PDF

Conventional in vitro human hepatic models for drug testing are based on the use of standard cell lines derived from hepatomas or primary human hepatocytes (PHHs). Limited availability, interdonor functional variability and early phenotypic alterations in PHHs restrict their use, whilst standard cell lines such as HepG2 lack a substantial and variable set of liver-specific functions such as CYP450 activity. Alternatives include the HepG2-derivative C3A cells selected as a more differentiated and metabolically active hepatic phenotype.

View Article and Find Full Text PDF

Organotypic liver culture models for hepatotoxicity studies that mimic in vivo hepatic functionality could help facilitate improved strategies for early safety risk assessment during drug development. Interspecies differences in drug sensitivity and mechanistic profiles, low predictive capacity, and limitations of conventional monocultures of human hepatocytes, with high attrition rates remain major challenges. Herein, we show stable, cell-type specific phenotype/cellular polarity with differentiated functionality in human hepatocyte-like C3A cells (enhanced CYP3A4 activity/albumin synthesis) when in co-culture with human vascular endothelial cells (HUVECs), thus demonstrating biocompatibility and relevance for evaluating drug metabolism and toxicity.

View Article and Find Full Text PDF

The possibility of converting cells from blood mononuclear cells (MNC) to liver cells provides promising opportunities for the study of diseases and the assessment of new drugs. However, clinical applications have to meet GMP requirements and the methods for generating induced pluripotent cells (iPCs) have to avoid insertional mutagenesis, a possibility when using viral vehicles for the delivery of reprogramming factors. We have developed an efficient non-integration method for reprogramming fresh or frozen blood MNC, maintained in an optimised cytokine cocktail, to generate induced pluripotent cells.

View Article and Find Full Text PDF

Cholangiocarcinoma (CC) is typically diagnosed at an advanced stage and is refractory to surgical intervention and chemotherapy. Despite a global increase in the incidence of CC, little progress has been made toward the development of treatments for this cancer. Here we utilized human tissue; CC cell xenografts; a p53-deficient transgenic mouse model; and a non-transgenic, chemically induced rat model of CC that accurately reflects both the inflammatory and regenerative background associated with human CC pathology.

View Article and Find Full Text PDF

Development of effective malaria vaccines is hampered by the problem of producing correctly folded Plasmodium proteins for use as vaccine components. We have investigated the use of a novel ciliate expression system, Tetrahymena thermophila, as a P. falciparum vaccine antigen platform.

View Article and Find Full Text PDF

The Block 2 region of the merozoite surface protein-1 (MSP-1) of Plasmodium falciparum has been identified as a target of protective immunity by a combination of seroepidemiology and parasite population genetics. Immunogenicity studies in small animals and Aotus monkeys were used to determine the efficacy of recombinant antigens derived from this region of MSP-1 as a potential vaccine antigen. Aotus lemurinus griseimembra monkeys were immunized three times with a recombinant antigen derived from the Block 2 region of MSP-1 of the monkey-adapted challenge strain, FVO of Plasmodium falciparum, using an adjuvant suitable for use in humans.

View Article and Find Full Text PDF

Notch signalling has been implicated during haematopoietic development in vivo and in the differentiation of haematopoietic cells from pluripotent cells in vitro. However interpretation of data from many of these studies has been complicated by the heterogeneous nature of cell populations under study and by the fact that the Notch pathway is active during embryogenesis prior to the development of the haematopoietic system. To define the role of Notch signalling in more precise cell populations during the early stages of haematopoietic development within the aorta-gonad-mesonephros (AGM) microenvironment we co-cultured differentiating ESCs on a stromal cell line derived from this region of the embryo.

View Article and Find Full Text PDF

Aims: The formation of endothelial cell-colony forming units (EC-CFUs) is increased by vascular injury, although their function in vivo is unclear. We, therefore, examined the constituents of EC-CFUs and the mechanisms of their generation.

Methods And Results: We performed immunohistochemical characterization of EC-CFUs and their mononuclear precursors.

View Article and Find Full Text PDF

11β-Hydroxysteroid dehydrogenase type-1 (11β-HSD1) converts inert cortisone into active cortisol, amplifying intracellular glucocorticoid action. 11β-HSD1 deficiency improves cardiovascular risk factors in obesity but exacerbates acute inflammation. To determine the effects of 11β-HSD1 deficiency on atherosclerosis and its inflammation, atherosclerosis-prone apolipoprotein E-knockout (ApoE-KO) mice were treated with a selective 11β-HSD1 inhibitor or crossed with 11β-HSD1-KO mice to generate double knockouts (DKOs) and challenged with an atherogenic Western diet.

View Article and Find Full Text PDF

Rapid endothelisation is of critical importance in the prevention of adverse remodelling after device implantation. Currently, there is a need for alternative strategies to promote re-endothelialisation for intravascular stents and vascular grafts. Using polymer microarray technology 345 polymers are comprehensively assessed and a matrix is identified that specifically supports both progenitor and mature endothelial cell activity in vitro and in vivo while minimising platelet attachment.

View Article and Find Full Text PDF

A decade of research has sought to identify circulating endothelial progenitor cells (EPC) in order to harness their potential for cardiovascular regeneration. Endothelial outgrowth cells (EOC) most closely fulfil the criteria for an EPC, but their origin remains obscure. Our aim was to identify the source and precursor of EOC and to assess their regenerative potential compared to mature endothelial cells.

View Article and Find Full Text PDF

Introduction: Endothelial progenitor cells (EPC) capable of initiating or augmenting vascular growth were recently identified within the small population of CD34-expressing cells that circulate in human peripheral blood and which are considered hematopoietic progenitor cells (HPC). Soon thereafter human HPC began to be used in clinical trials as putative sources of EPC for therapeutic vascular regeneration, especially in myocardial and critical limb ischemias. However, unlike HPC where hematopoietic efficacy is related quantitatively to CD34+ cell numbers implanted, there has been no consensus on how to measure EPC or how to assess cellular graft potency for vascular regeneration.

View Article and Find Full Text PDF

There is much interest in the mechanisms that regulate adult tissue homeostasis and their relationship to processes governing foetal development. Mice deleted for the Wilms' tumour gene, Wt1, lack kidneys, gonads, and spleen and die at mid-gestation due to defective coronary vasculature. Wt1 is vital for maintaining the mesenchymal-epithelial balance in these tissues and is required for the epithelial-to-mesenchyme transition (EMT) that generates coronary vascular progenitors.

View Article and Find Full Text PDF