Publications by authors named "Kay E Gottschalk"

SELEX (Systematic Evolution of Ligands by Exponential enrichment) processes aim on the evolution of high-affinity aptamers as binding entities in diagnostics and biosensing. Aptamers can represent game-changers as constituents of diagnostic assays for the management of instantly occurring infectious diseases or other health threats. Without in-process quality control measures SELEX suffers from low overall success rates.

View Article and Find Full Text PDF

Skin is the largest human organ with easily noticeable biophysical manifestations of aging. As human tissues age, there is chronological accumulation of biophysical changes due to internal and environmental factors. Skin aging leads to decreased elasticity and the loss of dermal matrix integrity via degradation.

View Article and Find Full Text PDF

Upon aging, the function of the intestinal epithelium declines with a concomitant increase in aging-related diseases. ISCs play an important role in this process. It is known that ISC clonal dynamics follow a neutral drift model.

View Article and Find Full Text PDF

Throughout life, the body is subjected to various mechanical forces on the organ, tissue, and cellular level. Mechanical stimuli are essential for organ development and function. One organ whose function depends on the tightly connected interplay between mechanical cell properties, biochemical signaling, and external forces is the lung.

View Article and Find Full Text PDF

The pathogenic yeast Candida auris has received increasing attention due to its ability to cause fatal infections, its resistance toward important fungicides, and its ability to persist on surfaces including medical devices in hospitals. To brace health care systems for this considerable risk, alternative therapeutic approaches such as antifungal peptides are urgently needed. In clinical wound care, a significant focus has been directed toward novel surgical (wound) dressings as first defense lines against C.

View Article and Find Full Text PDF

Adhesion of monocytes to micro-injuries on arterial walls is an important early step in the occurrence and development of degenerative atherosclerotic lesions. At these injuries, collagen is exposed to the blood stream. We are interested whether age influences monocyte adhesion to collagen under flow, and hence influences the susceptibility to arteriosclerotic lesions.

View Article and Find Full Text PDF

Background: Ventricular dilation is known as a pivotal predictor in recent-onset cardiomyopathy (ROCM), but its pathophysiology is not fully understood. In the present study we investigated whether single-cell stiffness of right and left ventricular-derived fibroblasts has an effect on cardiac phenotype in patients with ROCM.

Methods And Results: Patients with endomyocardial biopsy-proven ROCM were included (n=10).

View Article and Find Full Text PDF

How different integrins that bind to the same type of extracellular matrix protein mediate specific functions is unclear. We report the functional analysis of β1- and αv-class integrins expressed in pan-integrin-null fibroblasts seeded on fibronectin. Reconstitution with β1-class integrins promotes myosin-II-independent formation of small peripheral adhesions and cell protrusions, whereas expression of αv-class integrins induces the formation of large focal adhesions.

View Article and Find Full Text PDF

Great progress has been made in the design and synthesis of molecular motors and rotors. Loosely inspired by biomolecular machines such as kinesin and the FoF1 ATPsynthase, these molecules are hoped to provide elements for construction of more elaborate structures that can carry out tasks at the nanoscale corresponding to the tasks accomplished by elementary machines in the macroscopic world. Most of the molecular motors synthesized to date suffer from the drawback that they operate relatively slowly (less than kHz).

View Article and Find Full Text PDF

The adsorption of proteins on inorganic surfaces is of fundamental biological importance. Further, biomedical and nanotechnological applications increasingly use interfaces between inorganic material and polypeptides. Yet, the underlying adsorption mechanism of polypeptides on surfaces is not well understood and experimentally difficult to analyze.

View Article and Find Full Text PDF

In order to study protein-inorganic surface association processes, we have developed a physics-based energy model, the ProMetCS model, which describes protein-surface interactions at the atomistic level while treating the solvent as a continuum. Here, we present an approach to modeling the interaction of a protein with an atomically flat Au(111) surface in an aqueous solvent. Protein-gold interactions are modeled as the sum of van der Waals, weak chemisorption, and electrostatic interactions, as well as the change in free energy due to partial desolvation of the protein and the metal surface upon association.

View Article and Find Full Text PDF

Formation of transient protein complexes is an important process in cells. Details of the association process as well as the energy landscapes of association are not well understood. In particular, the nature, height and position of the energy barriers during complexation are debated.

View Article and Find Full Text PDF

Protein-surface interactions are fundamental in natural processes, and have great potential for applications ranging from nanotechnology to medicine. A recent workshop highlighted the current achievements and the main challenges in the field.

View Article and Find Full Text PDF

The beta subunit of Na,K-ATPase is required for stabilization and maturation of the catalytic alpha subunits and is also involved in cell adhesion and establishing epithelial cell polarity. However, the mechanism of cell adhesion effects and protein partners of beta are unknown. We have applied fold recognition methods to predict that a C-terminal domain of the beta subunits of Na,K-ATPase and H,K-ATPase has an immunoglobulin-like fold, which resembles cell adhesion molecules.

View Article and Find Full Text PDF

Multidimensional energy landscapes are an intrinsic property of proteins and define their dynamic behavior as well as their response to external stimuli. In order to explore the energy landscape and its implications on the dynamic function of proteins dynamic force spectroscopy and steered molecular dynamics (SMD) simulations have proved to be important tools. In this study, these techniques have been employed to analyze the influence of the direction of the probing forces on the complex of an antibody fragment with its peptide antigen.

View Article and Find Full Text PDF

For many applications, antibodies need to be engineered toward maximum affinity. Strategies are in demand to especially optimize this process toward slower dissociation rates, which correlate with the (un)binding forces. Using single-molecule force spectroscopy, we have characterized three variants of a recombinant antibody single-chain Fv fragment.

View Article and Find Full Text PDF

Processing of the amyloid precursor protein (APP) by beta- and gamma-secretases leads to the generation of amyloid-beta (Abeta) peptides with varying lengths. Particularly Abeta42 contributes to cytotoxicity and amyloid accumulation in Alzheimer's disease (AD). However, the precise molecular mechanism of Abeta42 generation has remained unclear.

View Article and Find Full Text PDF

De novo design and redesign of proteins and protein complexes have made promising progress in recent years. Here, we give an overview of how to use available computer-based tools to design proteins to bind faster and tighter to their protein-complex partner by electrostatic optimization between the two proteins. Electrostatic optimization is possible because of the simple relation between the Debye-Huckel energy of interaction between a pair of proteins and their rate of association.

View Article and Find Full Text PDF

Despite their crucial importance for cellular function, little is known about the folding mechanisms of membrane proteins. Recently details of the folding energy landscape were elucidated by atomic force microscope (AFM)-based single molecule force spectroscopy. Upon unfolding and extraction of individual membrane proteins energy barriers in structural elements such as loops and helices were mapped and quantified with the precision of a few amino acids.

View Article and Find Full Text PDF

The recently reported crystal structures of the extracellular domains of the alphavbeta3 integrin in its unligated state and in complex with the peptide cyclo(-RGDf[NMe]V-) have dramatically increased our understanding of ligand binding to integrins. Nonetheless, ligand selectivity toward different integrin subtypes is still a challenging problem complicated by the fact that 3D structures of most of the integrin subtypes remain unknown. In this study, a three-dimensional model for the human alphavbeta5 integrin was obtained using homology modeling based on the crystal coordinates of alphavbeta3 in its bound conformation as template.

View Article and Find Full Text PDF

The structures of membrane transporters are still mostly unsolved. Only recently, the first two high-resolution structures of transporters of the major facilitator superfamily (MFS) were published. Despite the low sequence similarity of the two proteins involved, lactose permease and glycerol-3-phosphate transporter, the reported structures are highly similar.

View Article and Find Full Text PDF

Starting from the first crystal structure of the extracellular segment of the alpha(v)beta(3) integrin receptor with a cyclic RGD ligand bound to the active site, structural models for the interactions of known ligands with the alpha(v)beta(3) integrin receptor were generated by automated computational docking. The obtained complexes were evaluated for their consistency with structure-activity relationships and site-directed mutagenesis data. A comparison between the calculated interaction free energies and the experimental biological activities was also made.

View Article and Find Full Text PDF

Integrins are pivotal proteins in cell-cell adhesion, signaling and apoptosis. These properties render them attractive targets for drugs, especially those involved in cancer treatment. Recently, the structures of the extracellular domains of one of the integrin subtypes was solved with X-ray crystallography in the free form as well as bound to a ligand.

View Article and Find Full Text PDF

Integrins are composed of noncovalently bound dimers of an alpha- and a beta-subunit. They play an important role in cell-matrix adhesion and signal transduction through the cell membrane. Signal transduction can be initiated by the binding of intracellular proteins to the integrin.

View Article and Find Full Text PDF