Publications by authors named "Kawshik K Chowdhury"

A series of in vivo and in vitro studies using animal and human models in the past 15 years have demonstrated that approximately 55% (~66% in humans) of the glucose disposal effect of an i.v. injection of insulin in the fed state is dependent on the action of a second hormone, hepatic insulin sensitizing substance (HISS), which is released from the liver and stimulates glucose uptake in muscle, heart and kidneys.

View Article and Find Full Text PDF

Meal-induced insulin sensitization (MIS) refers to the augmented glucose uptake response to insulin following a meal. Absence of MIS (AMIS) causes significant decrease in post-meal glucose disposal leading to postprandial hyperglycemia, hyperinsulinemia, hyperlipidemia, adiposity, increased free radical stress, and a cluster of progressive metabolic, vascular, and cardiac dysfunctions referred to as the AMIS syndrome. We tested the hypothesis that fat accumulation in the liver and heart is part of the AMIS syndrome.

View Article and Find Full Text PDF

Meal-induced insulin sensitization (MIS) describes the augmented postprandial response to insulin through action of the hepatic insulin sensitizing substance (HISS). HISS-action is impaired in insulin resistance associated with aging and type 2 diabetes, but could be preserved by the antioxidant cocktail SAMEC, along with voluntary exercise. In this study, we tested whether antioxidant supplementation during voluntary training would interact with the effects of exercise on HISS-mediated glucose uptake in healthy and prediabetic rats.

View Article and Find Full Text PDF

The augmented whole-body glucose uptake response to insulin during the postprandial state is described as meal-induced insulin sensitization (MIS). MIS occurs when the presence of food in the upper gastrointestinal tract activates 2 feeding signals (activation of hepatic parasympathetic nerves and elevation of hepatic glutathione level), and causes insulin to release hepatic insulin sensitizing substance (HISS), which stimulates glucose uptake in skeletal muscle, heart, and kidneys. HISS action results in nutrient storage, primarily as glycogen.

View Article and Find Full Text PDF

The sensitisation of insulin action in response to a meal (i.e. meal-induced insulin sensitisation, MIS) represents one of the major means of increased glucose disposal in peripheral tissues during the postprandial state.

View Article and Find Full Text PDF

Background: Food in the upper gastrointestinal tract potentiates the glucose uptake response to insulin. Meal-induced insulin sensitization (MIS) occurs as a result of insulin-mediated release of hepatic insulin sensitizing substance (HISS) that increases glucose uptake in peripheral tissues. HISS release decreases with age, and exercise causes metabolic improvements in aging, therefore it is important to analyze the effect of exercise on age-associated decline in HISS-action.

View Article and Find Full Text PDF

The hexane (PLH), ethyl acetate (PLE) and methanol (PLM) extracts of dried whole plant parts of Polygonum lanatum Roxb. (Family, Polygonaceae) obtained by successive cold extraction, were subjected to evaluate anti-inflammatory, analgesic and diuretic activity in experimental animals. Oral administration of either PLH and PLM at a dose of 300 mg/kg body weight showed statistically significant (p < 0.

View Article and Find Full Text PDF