Publications by authors named "Kawall D"

We present a new measurement of the positive muon magnetic anomaly, a_{μ}≡(g_{μ}-2)/2, from the Fermilab Muon g-2 Experiment using data collected in 2019 and 2020. We have analyzed more than 4 times the number of positrons from muon decay than in our previous result from 2018 data. The systematic error is reduced by more than a factor of 2 due to better running conditions, a more stable beam, and improved knowledge of the magnetic field weighted by the muon distribution, ω[over ˜]_{p}^{'}, and of the anomalous precession frequency corrected for beam dynamics effects, ω_{a}.

View Article and Find Full Text PDF

We present measurements of the cross section and double-helicity asymmetry A_{LL} of direct-photon production in p[over →]+p[over →] collisions at sqrt[s]=510  GeV. The measurements have been performed at midrapidity (|η|<0.25) with the PHENIX detector at the Relativistic Heavy Ion Collider.

View Article and Find Full Text PDF

Studying spin-momentum correlations in hadronic collisions offers a glimpse into a three-dimensional picture of proton structure. The transverse single-spin asymmetry for midrapidity isolated direct photons in p^{↑}+p collisions at sqrt[s]=200  GeV is measured with the PHENIX detector at the Relativistic Heavy Ion Collider (RHIC). Because direct photons in particular are produced from the hard scattering and do not interact via the strong force, this measurement is a clean probe of initial-state spin-momentum correlations inside the proton and is in particular sensitive to gluon interference effects within the proton.

View Article and Find Full Text PDF

Pulsed nuclear magnetic resonance (NMR) is widely used in high-precision magnetic field measurements. The absolute value of the magnetic field is determined from the precession frequency of nuclear magnetic moments. The Hilbert transform is one of the methods that have been used to extract the phase function from the observed free induction decay (FID) signal and then its frequency.

View Article and Find Full Text PDF

We present the first results of the Fermilab National Accelerator Laboratory (FNAL) Muon g-2 Experiment for the positive muon magnetic anomaly a_{μ}≡(g_{μ}-2)/2. The anomaly is determined from the precision measurements of two angular frequencies. Intensity variation of high-energy positrons from muon decays directly encodes the difference frequency ω_{a} between the spin-precession and cyclotron frequencies for polarized muons in a magnetic storage ring.

View Article and Find Full Text PDF

We report development of a highly accurate (parts per billion) absolute magnetometer based on ^{3}He NMR. Optical pumping polarizes the spins, long coherence times provide high sensitivity, and the ^{3}He electron shell effectively isolates the nuclear spin providing accuracy limited only by corrections including materials, sample shape, and magnetization. Our magnetometer was used to confirm calibration, to 32 ppb, of the magnetic-field sensors used in recent measurements of the muon magnetic moment anomaly (g_{μ}-2), which differs from the standard model by 2.

View Article and Find Full Text PDF

We report on the nuclear dependence of transverse single-spin asymmetries (TSSAs) in the production of positively charged hadrons in polarized p^{↑}+p, p^{↑}+Al, and p^{↑}+Au collisions at sqrt[s_{NN}]=200  GeV. The measurements have been performed at forward rapidity (1.4<η<2.

View Article and Find Full Text PDF

Asymmetric nuclear collisions of p+Al, p+Au, d+Au, and ^{3}He+Au at sqrt[s_{NN}]=200  GeV provide an excellent laboratory for understanding particle production, as well as exploring interactions among these particles after their initial creation in the collision. We present measurements of charged hadron production dN_{ch}/dη in all such collision systems over a broad pseudorapidity range and as a function of collision multiplicity. A simple wounded quark model is remarkably successful at describing the full data set.

View Article and Find Full Text PDF

Recently, multiparticle-correlation measurements of relativistic p/d/^{3}He+Au, p+Pb, and even p+p collisions show surprising collective signatures. Here, we present beam-energy-scan measurements of two-, four-, and six-particle angular correlations in d+Au collisions at sqrt[s_{NN}]=200, 62.4, 39, and 19.

View Article and Find Full Text PDF

During 2015, the Relativistic Heavy Ion Collider (RHIC) provided collisions of transversely polarized protons with Au and Al nuclei for the first time, enabling the exploration of transverse-single-spin asymmetries with heavy nuclei. Large single-spin asymmetries in very forward neutron production have been previously observed in transversely polarized p+p collisions at RHIC, and the existing theoretical framework that was successful in describing the single-spin asymmetry in p+p collisions predicts only a moderate atomic-mass-number (A) dependence. In contrast, the asymmetries observed at RHIC in p+A collisions showed a surprisingly strong A dependence in inclusive forward neutron production.

View Article and Find Full Text PDF

A new experiment is described to detect a permanent electric dipole moment of the proton with a sensitivity of 10 e ⋅ cm by using polarized "magic" momentum 0.7 GeV/c protons in an all-electric storage ring. Systematic errors relevant to the experiment are discussed and techniques to address them are presented.

View Article and Find Full Text PDF

Jet production rates are measured in p+p and d+Au collisions at sqrt[s_{NN}]=200  GeV recorded in 2008 with the PHENIX detector at the Relativistic Heavy Ion Collider. Jets are reconstructed using the R=0.3 anti-k_{t} algorithm from energy deposits in the electromagnetic calorimeter and charged tracks in multiwire proportional chambers, and the jet transverse momentum (p_{T}) spectra are corrected for the detector response.

View Article and Find Full Text PDF

We present the first measurement of elliptic (v(2)) and triangular (v(3)) flow in high-multiplicity (3)He+Au collisions at √(s(NN))=200  GeV. Two-particle correlations, where the particles have a large separation in pseudorapidity, are compared in (3)He+Au and in p+p collisions and indicate that collective effects dominate the second and third Fourier components for the correlations observed in the (3)He+Au system. The collective behavior is quantified in terms of elliptic v(2) and triangular v(3) anisotropy coefficients measured with respect to their corresponding event planes.

View Article and Find Full Text PDF

We present azimuthal angular correlations between charged hadrons and energy deposited in calorimeter towers in central d+Au and minimum bias p+p collisions at sqrt[s_{NN}]=200 GeV. The charged hadron is measured at midrapidity |η|<0.35, and the energy is measured at large rapidity (-3.

View Article and Find Full Text PDF

The PHENIX experiment has measured open heavy-flavor production via semileptonic decay over the transverse momentum range 1 < p(T) < 6  GeV/c at forward and backward rapidity (1.4 < |y| < 2.0) in d+Au and p + p collisions at √sNN = 200  GeV.

View Article and Find Full Text PDF

Charged-pion-interferometry measurements were made with respect to the second- and third-order event plane for Au+Au collisions at sqrt[s_{NN}]=200  GeV. A strong azimuthal-angle dependence of the extracted Gaussian-source radii was observed with respect to both the second- and third-order event planes. The results for the second-order dependence indicate that the initial eccentricity is reduced during the medium evolution, which is consistent with previous results.

View Article and Find Full Text PDF

The PHENIX collaboration at the Relativistic Heavy Ion Collider (RHIC) reports measurements of azimuthal dihadron correlations near midrapidity in d+Au collisions at √(s(NN))=200 GeV. These measurements complement recent analyses by experiments at the Large Hadron Collider (LHC) involving central p+Pb collisions at √(s(NN))=5.02 TeV, which have indicated strong anisotropic long-range correlations in angular distributions of hadron pairs.

View Article and Find Full Text PDF

We present results for three charmonia states (ψ', χc, and J/ψ) in d+Au collisions at |y|<0.35 and sqrt[s(NN)]=200  GeV. We find that the modification of the ψ' yield relative to that of the J/ψ scales approximately with charged particle multiplicity at midrapidity across p+A, d+Au, and A+A results from the Super Proton Synchrotron and the Relativistic Heavy Ion Collider.

View Article and Find Full Text PDF

We investigated the influence of transforming growth factor-β (TGF-β) signaling on developmental programmed cell death in the mouse retina by direct and specific molecular targeting of TGF-β type II receptor (TβRII) and Smad7 in retinal progenitor cells. Mice were generated carrying a conditional deletion of the TβRII in cells that originate from the inner layer of the optic cup. The animals showed a significant decrease of phosphorylated Smad3 in both the central and peripheral retina, which indicates the diminished activity of TGF-β signaling.

View Article and Find Full Text PDF

The jet fragmentation function is measured with direct photon-hadron correlations in p+p and Au+Au collisions at √[s(NN)]=200 GeV. The p(T) of the photon is an excellent approximation to the initial p(T) of the jet and the ratio z(T)=p(T)(h)/p(T)(γ) is used as a proxy for the jet fragmentation function. A statistical subtraction is used to extract the direct photon-hadron yields in Au+Au collisions while a photon isolation cut is applied in p+p.

View Article and Find Full Text PDF

The PHENIX experiment has measured electrons and positrons at midrapidity from the decays of hadrons containing charm and bottom quarks produced in d+Au and p+p collisions at sqrt[S(NN)]=200 GeV in the transverse-momentum range 0.85 ≤ p(T)(e) ≤ 8.5 GeV/c.

View Article and Find Full Text PDF

Neutral-pion π(0) spectra were measured at midrapidity (|y|<0.35) in Au+Au collisions at √(s(NN))=39 and 62.4 GeV and compared with earlier measurements at 200 GeV in a transverse-momentum range of 1 View Article and Find Full Text PDF

The second Fourier component v(2) of the azimuthal anisotropy with respect to the reaction plane is measured for direct photons at midrapidity and transverse momentum (p(T)) of 1-12 GeV/c in Au + Au collisions at √s(NN)] = 200 GeV. Previous measurements of this quantity for hadrons with p(T) < 6 GeV/c indicate that the medium behaves like a nearly perfect fluid, while for p(T) > 6 GeV/c a reduced anisotropy is interpreted in terms of a path-length dependence for parton energy loss. In this measurement with the PHENIX detector at the Relativistic Heavy Ion Collider we find that for p(T) > 4 GeV/c the anisotropy for direct photons is consistent with zero, which is as expected if the dominant source of direct photons is initial hard scattering.

View Article and Find Full Text PDF