Publications by authors named "Kaw Bing Chua"

Pteropine orthoreoviruses (PRVs) are an emerging group of fusogenic, bat-borne viruses from the genus. Since the isolation of PRV from a patient with acute respiratory tract infections in 2006, the zoonotic potential of PRV has been further highlighted following subsequent isolation of PRV species from patients in Malaysia, Hong Kong and Indonesia. However, the entry mechanism of PRV is currently unknown.

View Article and Find Full Text PDF

• A stable EV-A71 virus vector was created to generate chimeric strains expressing capsid protein genes of EV-A71 C5 and CA16. • Phenotypic and genetic stability of the generated chimeric EV-A71 and CA16 were analyzed. • The amino acids at the cleavage site between VP1 and 2A is crucial for stability.

View Article and Find Full Text PDF

Enterovirus A71 (EV-A71) is one of the major etiological agents of hand, foot, and mouth disease (HFMD), and infection occasionally leads to fatal neurological complications in children. However, only inactivated whole-virus vaccines against EV-A71 are commercially available in Mainland China. Furthermore, the mechanisms underlying the infectivity and pathogenesis of EV-A71 remain to be better understood.

View Article and Find Full Text PDF

Enterovirus A71 (EV-A71) and coxsackievirus A16 (CA16) are major etiological agents of hand foot and mouth disease (HFMD) in children, which may result in fatal neurological complications. The development of safe, cost effective vaccines against HFMD, especially for use in developing countries, is still a top public health priority. We have successfully generated a stable, cold-adapted, temperature sensitive/conditional lethal EV-A71 through adaptive culturing in Vero cells at incrementally lower cultivation temperatures.

View Article and Find Full Text PDF

Enterovirus A71 (EV-A71) is a causative agent of hand, foot and mouth disease and occasionally causes death in children. Its infectivity and pathogenesis, however, remain to be better understood. Three sulfonated azo dyes, including acid red 88 (Ar88), were identified to enhance the infectivity of EV-A71, especially isolates with VP1-98K, 145E (-KE), by mainly promoting viral genome release in vitro.

View Article and Find Full Text PDF

Hand, foot, and mouth disease (HFMD), a highly contagious disease in children, is caused by human enteroviruses, including enterovirus 71 (EV71), coxsackievirus A16 (CVA16), and coxsackievirus A6 (CVA6). Although HFMD is usually mild and self-limiting, EV71 infection occasionally leads to fatal neurological disorders. Currently, no commercial antiviral drugs for HFMD treatment are available.

View Article and Find Full Text PDF

Our previous work has shown that Saffold virus (SAFV) induced several rodent and primate cell lines to undergo apoptosis (Xu et al. in Emerg Microb Infect 3:1-8, 2014), but the essential viral proteins of SAFV involved in apoptotic activity lack study. In this study, we individually transfected the viral proteins of SAFV into HEp-2 and Vero cells to assess their ability to induce apoptosis, and found that the 2B and 3C proteins are proapoptotic.

View Article and Find Full Text PDF

To determine whether Pteropine orthoreovirus (PRV) exposure has occurred in Singapore, we tested 856 individuals from an existing serum panel collected from 2005-2013. After an initial screen with luciferase immunoprecipitation system and secondary confirmation with virus neutralization test, we identified at least seven individuals with specific antibodies against PRV in both assays. Our findings confirm that PRV spillover into human populations is relatively common in this region of the world.

View Article and Find Full Text PDF

Introduction: Pteropine orthoreovirus (PRV) is an emerging zoonotic respiratory virus that has spilled over from bats to humans. Though initially found only in bats, further case studies have found viable virus in ill patients.

Methodology: PubMed was queried with the keywords of Nelson Bay orthoreovirus OR Pteropine orthoreovirus OR Melaka orthoreovirus OR Kampar orthoreovirus, and returned 17 hits.

View Article and Find Full Text PDF

Enterovirus 71 (EV71) causing Hand, Foot and Mouth Disease, is regarded as the most important neurotropic virus worldwide. EV71 is believed to replicate in muscles and infect motor neurons to reach the central nervous system (CNS). To further investigate the mechanisms involved, we have employed the motor neuron cell line NSC-34.

View Article and Find Full Text PDF

The Saffold virus (SAFV) genome is translated as a single long polyprotein precursor and co-translationally cleaved to yield 12 separate viral proteins. Little is known about the activities of SAFV proteins although their homologs in other picornaviruses have already been described. To further support research on functions and activities of respective viral proteins, we investigated the spatio-temporal distribution of SAFV proteins in Vero and HEp-2 cells that had been either transfected with plasmids that express individual viral proteins or infected with live SAFV.

View Article and Find Full Text PDF

Enterovirus 71 (EV-A71) is a neurotropic virus that sporadically causes fatal neurologic illness among infected children. Animal models of EV-A71 infection exist, but they do not recapitulate in animals the spectrum of disease and pathology observed in fatal human cases. Specifically, neurogenic pulmonary oedema (NPE)-the main cause of EV-A71 infection-related mortality-is not observed in any of these models.

View Article and Find Full Text PDF

Enterovirus 71 (EV71) is a neurotrophic virus that causes hand, foot and mouth disease (HFMD) and occasional neurological infection among children. It infects primate cells but not rodent cells, primarily due to the incompatibility between the virus and the expressed form of its receptor, scavenger receptor class B member 2 (SCARB2) protein, on rodent cells (mSCARB2). We previously generated adapted strains (EV71:TLLm and EV71:TLLmv) that were shown to productively infect primate and rodent cell lines and whose genomes exhibited a multitude of non-synonymous mutations compared with the EV71:BS parental virus.

View Article and Find Full Text PDF

Saffold Virus (SAFV) is a human cardiovirus that has been suggested to cause severe infection of the central nervous system (CNS). Compared to a similar virus, Theiler's murine encephalomyelitis virus (TMEV), SAFV has a truncated Leader (L) protein, a protein essential in the establishment of persistent CNS infections. In this study, we generated a chimeric SAFV by replacing the L protein of SAFV with that of TMEV.

View Article and Find Full Text PDF

This study aims to assess the incidence rate of Pteropine orthreovirus (PRV) infection in patients with acute upper respiratory tract infection (URTI) in a suburban setting in Malaysia, where bats are known to be present in the neighborhood. Using molecular detection of PRVs directly from oropharyngeal swabs, our study demonstrates that PRV is among one of the common causative agents of acute URTI with cough and sore throat as the commonest presenting clinical features. Phylogenetic analysis on partial major outer and inner capsid proteins shows that these PRV strains are closely related to Melaka and Kampar viruses previously isolated in Malaysia.

View Article and Find Full Text PDF

Since its identification in 1969, Enterovirus 71 (EV71) has been causing periodic outbreaks of infection in children worldwide and most prominently in the Asia-Pacific Region. Understanding the pathogenesis of Enterovirus 71 (EV71) is hampered by the virus's inability to infect small animals and replicate in their derived in vitro cultured cells. This manuscript describes the phenotypic and genotypic characteristics of two selected EV71 strains (EV71:TLLm and EV71:TLLmv), which have been adapted to replicate in mouse-derived NIH/3T3 cells, in contrast to the original parental virus which is only able to replicate in primate cell lines.

View Article and Find Full Text PDF

Saffold virus (SAFV), a newly discovered human cardiovirus of the Picornaviridae family, causes widespread infection among children, as shown by previous seroprevalence studies. To determine the host cell range of SAFV and its cytopathogenicity, eight mammalian cell lines that were available in the laboratory were screened for productive SAFV infection by a laboratory-adapted SAFV of genotype 3. Five of the cell lines (Neuro2A, CHO-K1, NIH/3T3, Vero and HEp-2) were found to be permissible.

View Article and Find Full Text PDF

The world has experienced an increased incidence and transboundary spread of emerging infectious diseases over the last four decades. We divided emerging infectious diseases into four categories, with subcategories in categories 1 and 4. The categorization was based on the nature and characteristics of pathogens or infectious agents causing the emerging infections, which are directly related to the mechanisms and patterns of infectious disease emergence.

View Article and Find Full Text PDF

Viruses in the family Picornaviridae are classified into nine genera. Within the family Picornaviridae, two species: Encephalomyocarditis virus and Theilovirus, are listed under the genus Cardiovirus. A novel Theilovirus, Saffold virus (SAFV), was first reported in 2007.

View Article and Find Full Text PDF
Introduction: Nipah virus--discovery and origin.

Curr Top Microbiol Immunol

January 2013

Until the Nipah outbreak in Malaysia in 1999, knowledge of human infections with the henipaviruses was limited to the small number of cases associated with the emergence of Hendra virus in Australia in 1994. The Nipah outbreak in Malaysia alerted the global public health community to the severe pathogenic potential and widespread distribution of these unique paramyxoviruses. This chapter briefly describes the initial discovery of Nipah virus and the challenges encountered during the initial identification and characterisation of the aetiological agent responsible for the outbreak of febrile encephalitis.

View Article and Find Full Text PDF

Background: Progress in dengue vaccine development has been hampered by limited understanding of protective immunity against dengue virus infection. Conventional neutralizing antibody titration assays that use FcγR-negative cells do not consider possible infection-enhancement activity. We reasoned that as FcγR-expressing cells are the major target cells of dengue virus, neutralizing antibody titration assays using FcγR-expressing cells that determine the sum of neutralizing and infection-enhancing activity, may better reflect the biological properties of antibodies in vivo.

View Article and Find Full Text PDF

Bats are increasingly being recognized as important reservoir hosts for a large number of viruses, some of them can be highly virulent when they infect human and livestock animals. Among the new bat zoonotic viruses discovered in recent years, several reoviruses (respiratory enteric orphan viruses) were found to be able to cause acute respiratory infections in humans, which included Melaka and Kampar viruses discovered in Malaysia, all of them belong to the genus Orthoreovirus, family Reoviridae. In this report, we describe the isolation of a highly related virus from an adult patient who suffered acute respiratory illness in Malaysia.

View Article and Find Full Text PDF

Objective: To evaluate the performance of a newly developed point-of-care test (POCT) for the detection of measles-specific IgM antibodies in serum and oral fluid specimens and to assess if measles virus nucleic acid could be recovered from used POCT strips.

Methods: The POCT was used to test 170 serum specimens collected through measles surveillance or vaccination programmes in Ethiopia, Malaysia and the Russian Federation: 69 were positive for measles immunoglobulin M (IgM) antibodies, 74 were positive for rubella IgM antibodies and 7 were positive for both. Also tested were 282 oral fluid specimens from the measles, mumps and rubella (MMR) surveillance programme of the United Kingdom of Great Britain and Northern Ireland.

View Article and Find Full Text PDF

We previously described three new Malaysian orthoreoviruses designated Pulau virus, Melaka virus and Kampar virus. Melaka and Kampar viruses were shown to cause respiratory disease in humans. These viruses, together with Nelson Bay virus, isolated from Australian bats, are tentatively classified as different strains within the species Pteropine orthoreovirus (PRV), formerly known as Nelson Bay orthoreovirus, based on the small (S) genome segments.

View Article and Find Full Text PDF