Publications by authors named "Kavitha Gowrishankar"

Chimeric antigen receptor (CAR) T cell therapy is effective in treating B cell malignancies, but factors influencing the persistence of functional CAR T cells, such as product composition, patients' lymphodepletion, and immune reconstitution, are not well understood. To shed light on this issue, here we conduct a single-cell multi-omics analysis of transcriptional, clonal, and phenotypic profiles from pre- to 1-month post-infusion of CAR and CAR T cells from patients from a CARTELL study (ACTRN12617001579381) who received a donor-derived 4-1BB CAR product targeting CD19. Following infusion, CAR T cells and CAR T cells shows similar differentiation profiles with clonally expanded populations across heterogeneous phenotypes, demonstrating clonal lineages and phenotypic plasticity.

View Article and Find Full Text PDF

Although the advent of ART has significantly reduced the morbidity and mortality associated with HIV infection, the stable pool of HIV in latently infected cells requires lifelong treatment adherence, with the cessation of ART resulting in rapid reactivation of the virus and productive HIV infection. Therefore, these few cells containing replication-competent HIV, known as the latent HIV reservoir, act as the main barrier to immune clearance and HIV cure. While several strategies involving HIV silencing or its reactivation in latently infected cells for elimination by immune responses have been explored, exciting cell based immune therapies involving genetically engineered T cells expressing synthetic chimeric receptors (CAR T cells) are highly appealing and promising.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR) T cells targeting CD19 have demonstrated remarkable efficacy in the treatment of B cell malignancies. Current CAR T cell manufacturing protocols are complex and costly due to their reliance on viral vectors. Non-viral systems of genetic modification, such as with transposase and transposon systems, offer a potential streamlined alternative for CAR T cell manufacture and are currently being evaluated in clinical trials.

View Article and Find Full Text PDF

We performed a phase 1 clinical trial to evaluate outcomes in patients receiving donor-derived CD19-specific chimeric antigen receptor (CAR) T cells for B-cell malignancy that relapsed or persisted after matched related allogeneic hemopoietic stem cell transplant. To overcome the cost and transgene-capacity limitations of traditional viral vectors, CAR T cells were produced using the piggyBac transposon system of genetic modification. Following CAR T-cell infusion, 1 patient developed a gradually enlarging retroperitoneal tumor due to a CAR-expressing CD4+ T-cell lymphoma.

View Article and Find Full Text PDF

Objective: Adoptive immunotherapy with expanded tumor-specific T cells has potential as anticancer therapy. Preferentially expressed antigen in melanoma (PRAME) is an attractive target overexpressed in several cancers including melanoma and acute myeloid leukaemia (AML), with low expression in normal tissue outside the gonads. We developed a GMP-compliant manufacturing method for PRAME-specific T cells from healthy donors for adoptive immunotherapy.

View Article and Find Full Text PDF

Chimeric antigen receptor T (CAR-T) cell therapy has dramatically revolutionised cancer treatment. The FDA approval of two CAR-T cell products for otherwise incurable refractory B-cell acute lymphoblastic leukaemia (B-ALL) and aggressive B-cell non-Hodgkin lymphoma has established this treatment as an effective immunotherapy option. The race for extending CAR-T therapy for various tumours is well and truly underway.

View Article and Find Full Text PDF

CD19-specific chimeric antigen receptor (CAR19) T cells, generated using viral vectors, are an efficacious but costly treatment for B cell malignancies. The nonviral transposon system provides a simple and inexpensive alternative for CAR19 T cell production. Until now, has been plasmid based, facilitating economical vector amplification in bacteria.

View Article and Find Full Text PDF

T-cells expressing synthetic chimeric antigen receptors (CARs) have revolutionized immuno-oncology and highlighted the use of adoptive cell transfer, for the treatment of cancer. The phenomenal clinical success obtained in the treatment of hematological malignancies with CAR T-cells has not been reproduced in the treatment of solid tumors, mainly due to the suppressive and hostile tumor microenvironment (TME). This review will address the immunosuppressive features of the TME, which include the stroma, cytokine and chemokine milieu, suppressive regulatory cells and hypoxic conditions, which can all pose formidable barriers for the effective anti-tumor function of CAR T-cells.

View Article and Find Full Text PDF

The epigenetic modifier EZH2 is part of the polycomb repressive complex that suppresses gene expression via histone methylation. Activating mutations in EZH2 are found in a subset of melanoma that contributes to disease progression by inactivating tumor suppressor genes. In this study we have targeted EZH2 with a specific inhibitor (GSK126) or depleted EZH2 protein by stable shRNA knockdown.

View Article and Find Full Text PDF

Histone acetylation marks have an important role in controlling gene expression and are removed by histone deacetylases (HDACs). These marks are read by bromodomain and extra-terminal (BET) proteins and novel inhibitiors of these proteins are currently in clinical development. Inhibitors of HDAC and BET proteins have individually been shown to cause apoptosis and reduce growth of melanoma cells.

View Article and Find Full Text PDF

Monoclonal antibodies against immune checkpoint blockade have proven to be a major success in the treatment of melanoma. The programmed death receptor-1 ligand-1 (PD-L1) expression on melanoma cells is believed to have an inhibitory effect on T cell responses and to be an important escape mechanism from immune attack. Previous studies have shown that PD-L1 can be expressed constitutively or can be induced by IFN-γ secreted by infiltrating lymphocytes.

View Article and Find Full Text PDF

Pembrolizumab (MK-3475) is a monoclonal antibody that binds to the PD-1 receptor on T cells and prevents binding to its ligands PD-L1 and PD-L2. Blocking this receptor frees T cells from the inhibitory effects of PD-L1 and allows them to mediate antitumor effects against cancer cells. In a large Phase I study of 411 patients with melanoma, high durable response rates over a range of doses and schedules have been shown with very little toxicity.

View Article and Find Full Text PDF

The introduction of immunotherapy based on the blockade of the PD1/PD-L1 checkpoints has been associated with high response rates and durable remissions of disease in patients with metastatic melanoma, to the extent that it is now considered the standard of care for a wide range of patients, irrespective of their or mutation status. In addition, more frequent follow-up of patients who are at high risk of recurrence after surgical treatment appears to be justified, as does neoadjuvant treatments in order to render patients treatable by surgery. The limitations of this treatment include failure of some patients to respond, a low rate of complete responses and relapses of the disease during treatment.

View Article and Find Full Text PDF

The transcription factor NF-kappaB (NF-kB) is a key regulator of cytokine and chemokine production in melanoma and is responsible for symptoms such as anorexia, fatigue, and weight loss. In addition, NF-kB is believed to contribute to progression of the disease by upregulation of cell cycle and anti-apoptotic genes and to contribute to resistance against targeted therapies and immunotherapy. In this study, we have examined the ability of the bromodomain and extra-terminal (BET) protein inhibitor I-BET151 to inhibit NF-kB in melanoma cells.

View Article and Find Full Text PDF

Epigenetic changes are widespread in melanoma and contribute to the pathogenic biology of this disease. In the present study, we show that I-BET151, which belongs to a new class of drugs that target the BET family of epigenetic "reader" proteins, inhibits melanoma growth in vivo and induced variable degrees of apoptosis in a panel of melanoma cells. Apoptosis was caspase dependent and associated with G1 cell cycle arrest.

View Article and Find Full Text PDF

Acquired resistance to BRAF inhibitors often involves MAPK re-activation, yet the MEK inhibitor trametinib showed minimal clinical activity in melanoma patients that had progressed on BRAF-inhibitor therapy. Selective ERK inhibitors have been proposed as alternative salvage therapies. We show that ERK inhibition is more potent than MEK inhibition at suppressing MAPK activity and inhibiting the proliferation of multiple BRAF inhibitor resistant melanoma cell models.

View Article and Find Full Text PDF

Inhibitors of the mitogen-activated protein kinases (MAPK), BRAF, and MAP-ERK kinase (MEK) induce tumor regression in the majority of patients with BRAF-mutant metastatic melanoma. The clinical benefit of MAPK inhibitors is restricted by the development of acquired resistance with half of those who benefit having progressed by 6 to 7 months and long-term responders uncommon. There remains no agreed treatment strategy on disease progression in these patients.

View Article and Find Full Text PDF

Approximately 50% of melanomas require oncogenic B-RAF(V600E) signaling for proliferation, survival, and metastasis, and the use of highly selective B-RAF inhibitors has yielded remarkable, although short-term, clinical responses. Reactivation of signaling downstream of B-RAF is frequently associated with acquired resistance to B-RAF inhibitors, and the identification of B-RAF targets may therefore provide new strategies for managing melanoma. In this report, we applied whole-genome expression analyses to reveal that oncogenic B-RAF(V600E) regulates genes associated with epithelial-mesenchymal transition in normal cutaneous human melanocytes.

View Article and Find Full Text PDF

Cellular senescence permanently restricts the replicative capacity of cells in response to various stress signals, including aberrant activation of oncogenes. The presence of predictive senescence markers in human premalignant lesions suggests that senescence may function as a genuine tumor suppressor. These markers are not exclusive to the senescence program, however, and it is possible that their expression in vivo does not discriminate irreversible from reversible forms of proliferative arrest.

View Article and Find Full Text PDF

Aberrant activation of the BRAF kinase occurs in ∼60% of melanomas, and although BRAF inhibitors have shown significant early clinical success, acquired resistance occurs in most patients. Resistance to chronic BRAF inhibition often involves reactivation of mitogen-activated protein kinase (MAPK) signaling, and the combined targeting of BRAF and its downstream target MAPK/ERK kinase (MEK) may delay or overcome resistance. To investigate the efficacy of combination BRAF and MEK inhibition, we generated melanoma cell clones resistant to the BRAF inhibitor GSK2118436.

View Article and Find Full Text PDF

Varicella-zoster virus (VZV) reactivation causes herpes zoster, which is accompanied by an influx of lymphocytes into affected ganglia, but the stimulus for this infiltrate is not known. We report that VZV infection of ganglia leads to increased CXCL10 production in vitro, in an explant ganglion model and in naturally infected dorsal root ganglia (DRG) during herpes zoster. Lymphocytes expressing the receptor for CXCL10, CXCR3, were also observed throughout naturally infected ganglia during herpes zoster, including immediately adjacent to neurons.

View Article and Find Full Text PDF

Varicella-zoster virus (VZV) causes varicella (chicken pox) and establishes latency in ganglia, from where it reactivates to cause herpes zoster (shingles), which is often followed by postherpetic neuralgia (PHN), causing severe neuropathic pain that can last for years after the rash. Despite the major impact of herpes zoster and PHN on quality of life, the nature and kinetics of the virus-immune cell interactions that result in ganglion damage have not been defined. We obtained rare material consisting of seven sensory ganglia from three donors who had suffered from herpes zoster between 1 and 4.

View Article and Find Full Text PDF

Varicella-zoster virus (VZV) is a species-specific herpesvirus which infects sensory ganglia. We have developed a model of infection of human intact explant dorsal root ganglia (DRG). Following exposure of DRG to VZV, viral antigens were detected in neurons and nonneuronal cells.

View Article and Find Full Text PDF

Neurotrophin receptor alike death domain protein (NRADD) is a death-receptor-like protein with a unique ectodomain and an intracellular domain homologous to p75(NTR). Expression of NRADD results in apoptosis, but only in certain cell types. This paper characterizes the expression and proteolytic processing of the mature 55 kDa glycoprotein.

View Article and Find Full Text PDF