Publications by authors named "Kavita Khatana"

The recurrence of coronavirus disease and bacterial resistant strains has drawn attention to naturally occurring bioactive molecules that can demonstrate broad-spectrum efficacy against bacteria as well as viral strains. The drug-like abilities of naturally available "anacardic acids" (AA) and their derivatives against different bacterial and viral protein targets through in-silico tools were explored. Three viral protein targets [P DB: 6Y2E (SARS-CoV-2), 1AT3 (Herpes) and 2VSM (Nipah)] and four bacterial protein targets [P DB: 2VF5 (Escherichia coli), 2VEG (Streptococcus pneumoniae), 1JIJ (Staphylococcus aureus) and 1KZN (E.

View Article and Find Full Text PDF

This review aims to provide a comprehensive report on the quinoline ring with respect to its synthesis, reactivity, and therapeutic values. The reactivity of quinoline for the metal, electrophile, and other reactive counterparts defines the shape of the quinoline pharmacophore, which is an important part of this report; moreover, its spectroscopic characteristics have been included herein with suitable illustration. The quinoline and its derivatives have been presented as well as the general synthetic approaches along with the new developments in the catalytic system; the relevant information is also summarized under the various separate activity classes.

View Article and Find Full Text PDF

Background: The lead compounds from the series of 2, 4-disubstituted quinoline-3-carboxylic acid derivatives were selected for the in-silico mechanistic study. The compounds were found selective and potent for the cancer cell. Moreover, the relevant ADME in-silico data also support the safety of lead.

View Article and Find Full Text PDF

Anacardic acid (AA) and its derivatives are well-known for their therapeutic applications ranging from antitumor, antibacterial, antioxidant, anticancer, and so forth. However, their poor pharmacokinetic and safety properties create significant hurdles in the formulation of the final drug molecule. As a part of our endeavor to enhance the potential and exploration of the anticancer activities, a detailed study on the properties of selected AA derivatives was performed in this work.

View Article and Find Full Text PDF