The self-assembly of cyanuric acid into ordered nanostructures on a crystalline substrate, highly ordered pyrolytic graphite (HOPG), has been investigated at low temperature under ultrahigh vacuum (UHV) conditions by means of scanning tunneling microscopy in conjunction with theoretical simulations. Many domains with different self-assembly patterns were observed. One such domain represents the formation of an open 2D rosette (cyclic) structure from the self-assembly process, the first observation of this type of structure for pure cyanuric acid on a graphite substrate.
View Article and Find Full Text PDFThe morphology of monolayers formed upon adsorption of prochiral 1,5-substituted anthracene derivatives on highly oriented pyrolytic graphite is investigated using scanning tunneling microscopy at the liquid-solid interface. The adsorption orientation of these prochiral anthracene derivatives positions one of their enantiotopic faces in contact with the graphite. The molecules adsorb in rows with contact between adjacent anthracenes.
View Article and Find Full Text PDF