Publications by authors named "Kavita K Katti"

Purpose: We report an innovative green nanotechnology utilizing an electron-rich cocktail of phytochemicals from L. to synthesize biocompatible gold nanoparticles without the use of any external chemical reducing agents and evaluate their anti-cancer activity.

Methods: L.

View Article and Find Full Text PDF

TCN006, a formulation of (R)-3-Hydroxybutyrate glycerides, is a promising ingredient for enhancing ketone intake of humans. Ketones have been shown to have beneficial effects on human health. To be used by humans, TCN006 must be determined safe in appropriately designed safety studies.

View Article and Find Full Text PDF

Men with castration-resistant prostate cancer (CRPC) face poor prognosis and increased risk of treatment-incurred adverse effects resulting in one of the highest mortalities among patient population globally. Immune cells act as double-edged sword depending on the tumor microenvironment, which leads to increased infiltration of pro-tumor (M2) macrophages. Development of new immunomodulatory therapeutic agents capable of targeting the tumor microenvironment, and hence orchestrating the transformation of pro-tumor M2 macrophages to anti-tumor M1, would substantially improve treatment outcomes of CRPC patients.

View Article and Find Full Text PDF

Introduction: We report, herein, in vitro, and in vivo toxicity evaluation of silver nanoparticles stabilized with gum arabic protein (AgNP-GP) in embryos and in Sprague Dawley rats.

Purpose: The objective of this investigation was to evaluate in vitro and in vivo toxicity of silver nanoparticles stabilized with gum arabic protein (AgNP-GP), in multispecies due to the recognition that toxicity evaluations beyond a single species reflect the environmental realism. In the present study, AgNP-GP was synthesized through the reduction of silver salt using the tri-alanine-phosphine peptide (commonly referred to as "Katti Peptide") and stabilized using gum arabic protein.

View Article and Find Full Text PDF

Purpose: The overarching objective of this investigation was to investigate the intervention of green nanotechnology to transform the ancient holistic Ayurvedic medicine scientifically credible through reproducible formulations and rigorous pre-clinical/clinical evaluations.

Methods: We provide, herein, full details: (i) on the discovery and full characterization of gold nanoparticles-based Nano Swarna Bhasma (henceforth referred to as NSB drug); (ii) In vitro anti-tumor properties of NSB drug in breast tumor cells; (iii) pre-clinical therapeutic efficacy studies of NSB drug in breast tumor bearing SCID mice through oral delivery protocols and (iv) first results of clinical translation, from mice to human breast cancer patients, through pilot human clinical trials, conducted according to the Ayurveda, Yoga and Naturopathy, Unani, Siddha and Homoeopathy (abbreviated as AYUSH) regulatory guidelines of the Government of India in metastatic breast cancer patients.

Results: The preclinical in vitro and in vivo investigations, in breast tumor bearing mice, established unequivocally that the NSB Nano-Ayurvedic medicine-gold nanoparticles-based drug is highly effective in controlling the growth of breast tumors in a dose dependent fashion in vivo.

View Article and Find Full Text PDF

As part of our continuing quest to enhance the efficacy of bioactive phytochemicals in cancer therapy, we report an innovative green nanotechnology approach toward the use of resveratrol for the production of biocompatible resveratrol-conjugated gold nanoparticles (Res-AuNPs). Our overarching aim is to exploit the inherent pro-apoptotic properties of gold nanoparticles (AuNPs) through synergistic anti-tumor characteristics of resveratrol, with the aim of developing a new class of green nanotechnology-based phytochemical-embedded AuNPs for applications in oncology. Resveratrol was used to reduce Au to Au for the synthesis of Res-AuNPs at room temperature and gum arabic (GA) was used to further encapsulate the nanoparticulate surface to increase the overall stability of the AuNPs.

View Article and Find Full Text PDF

This letter describes a general method for the preparation of carbohydrate coated gold nanoparticles. The generality of this method has been demonstrated by surface coating AuNPs with the following sugars: glucose (monosaccharide); sucrose, maltose, or lactose (disaccharides); raffinose (trisaccharide); and starch (polysaccharide). The non-toxic, water-soluble phosphino aminoacid P(CH(2)NHCH(CH(3)-)COOH)(3), THPAL, has been used as a reducing agent in this process.

View Article and Find Full Text PDF

Nanocompatible chemistry which utilizes a novel nontoxic phosphino amino acid as a reducing agent has resulted in the development of therapeutically useful gold nanoparticles under biologically benign media. Stabilization of gold nanoparticles by the edible gum arabic matrix has provided an effective pathway toward in vivo stable target-specific gold nanoparticles.

View Article and Find Full Text PDF

Phosphorus functionalized trimeric alanine compounds (l)- and (d)-P(CH(2)NHCH(CH(3))COOH)(3) 2 are prepared in 90% yields by the Mannich reaction of Tris(hydroxymethyl)phosphine 1 with (l)- or (d)- Alanine in aqueous media. The hydration properties of (l)-2 and (d)-2 in water and water-methanol mixtures are described. The crystal structure analysis of (l)-2.

View Article and Find Full Text PDF

A novel hydrophilic gold compound, tetrakis((trishydroxymethyl)phosphine)gold(I) chloride 1, has been investigated for its antitumor properties. In vitro studies demonstrate that 1 is active against HCT-15, AGS, PC-3, and LNCaP tumor cells. Cell cycle analysis of the HCT-15 cells by flow cytometry revealed elongation of the G1 phase of the cell cycle leading to growth inhibition.

View Article and Find Full Text PDF