Publications by authors named "Kavindiya Modarage"

SARS-CoV-2 is a coronavirus that has rapidly spread across the world with a detrimental effect on the global population. Several reports have highlighted an increased mortality rate and a higher severity of COVID-19 infection in chronic kidney disease (CKD) individuals. Upon the development of various SARS-CoV-2 vaccines, mRNA vaccines including BNT162b2 and mRNA-1273 were deemed safe, with a high efficacy in preventing COVID-19 in the general population.

View Article and Find Full Text PDF

Polycystic Kidney Disease (PKD) refers to a group of disorders, driven by the formation of cysts in renal tubular cells and is currently one of the leading causes of end-stage renal disease. The range of symptoms observed in PKD is due to mutations in cilia-localising genes, resulting in changes in cellular signalling. As such, compounds that are currently in preclinical and clinical trials target some of these signalling pathways that are dysregulated in PKD.

View Article and Find Full Text PDF

Chronic kidney disease (CKD) encompasses a group of diverse diseases that are associated with accumulating kidney damage and a decline in glomerular filtration rate (GFR). These conditions can be of an acquired or genetic nature and, in many cases, interactions between genetics and the environment also play a role in disease manifestation and severity. In this review, we focus on genetically inherited chronic kidney diseases and dissect the links between canonical and non-canonical Wnt signalling, and this umbrella of conditions that result in kidney damage.

View Article and Find Full Text PDF

Autosomal Recessive Polycystic Kidney Disease (ARPKD) is a genetic disorder with an incidence of ~1:20,000 that manifests in a wide range of renal and liver disease severity in human patients and can lead to perinatal mortality. ARPKD is caused by mutations in PKHD1, which encodes the large membrane protein, Fibrocystin, required for normal branching morphogenesis of the ureteric bud during embryonic renal development. The variation in ARPKD phenotype suggests that in addition to PKHD1 mutations, other genes may play a role, acting as modifiers of disease severity.

View Article and Find Full Text PDF