Publications by authors named "Kavi Mehta"

8-oxoguanine (8-oxoG) is a common oxidative DNA lesion that causes G > T substitutions. Determinants of local and regional differences in 8-oxoG-induced mutability across genomes are currently unknown. Here, we show DNA oxidation induces G > T substitutions and insertion/deletion (INDEL) mutations in human cells and cancers.

View Article and Find Full Text PDF
Article Synopsis
  • - The herpes simplex virus (HSV-1) relies on its UL12 nuclease for effective DNA replication, as a mutant strain lacking UL12 (AN-1) shows normal replication but fails to package its DNA into infectious virus particles.
  • - Researchers used a method called iPOND combined with SILAC to analyze protein interactions at DNA replication sites, discovering that AN-1 lacks 60 essential host replication proteins compared to the wild-type virus, KOS.
  • - This study highlights how essential UL12 is for proper DNA replication fork function, as its absence leads to stalled replication processes, which could contribute to HSV-1-related complications in immunocompromised individuals.
View Article and Find Full Text PDF
Article Synopsis
  • - Papillomaviruses (PVs) are a type of DNA virus linked to benign warts and potential cancer, with most focus on human types (HPVs) while knowledge of PVs in other species is limited.
  • - A new PV, named PtepPV1, was identified in a nasal swab from a wild red colobus monkey in Uganda, with a genome that shares significant similarity to a human HPV strain.
  • - PtepPV1 represents the first instance of a nonhuman primate PV found in the nasal cavity and offers insights into the diversity and characteristics of PVs beyond humans, including features associated with cancer risk.
View Article and Find Full Text PDF

Obesity and environmental toxins are risk factors for breast cancer; however, there is limited knowledge on how these risk factors interact to promote breast cancer. Acrylamide, a probable carcinogen and obesogen, is a by-product in foods prevalent in the obesity-inducing Western diet. Acrylamide is metabolized by cytochrome P450 2E1 (CYP2E1) to the genotoxic epoxide, glycidamide, and is associated with an increased risk for breast cancer.

View Article and Find Full Text PDF

High-risk human papillomaviruses (HPVs) are the main cause of cervical, oropharyngeal, and anogenital cancers, which are all treated with definitive chemoradiation therapy when locally advanced. HPV proteins are known to exploit the host DNA damage response to enable viral replication and the epithelial differentiation protocol. This has far-reaching consequences for the host genome, as the DNA damage response is critical for the maintenance of genomic stability.

View Article and Find Full Text PDF

Abasic sites are common DNA lesions stalling polymerases and threatening genome stability. When located in single-stranded DNA (ssDNA), they are shielded from aberrant processing by 5-hydroxymethyl cytosine, embryonic stem cell (ESC)-specific (HMCES) via a DNA-protein crosslink (DPC) that prevents double-strand breaks. Nevertheless, HMCES-DPCs must be removed to complete DNA repair.

View Article and Find Full Text PDF

Abasic sites are common DNA lesions that stall polymerases and threaten genome stability. When located in single-stranded DNA (ssDNA), they are shielded from aberrant processing by HMCES via a DNA-protein crosslink (DPC) that prevents double-strand breaks. Nevertheless, the HMCES-DPC must be removed to complete DNA repair.

View Article and Find Full Text PDF

DNA replication preferentially initiates close to active transcription start sites (TSSs) in the human genome. Transcription proceeds discontinuously with an accumulation of RNA polymerase II (RNAPII) in a paused state near the TSS. Consequently, replication forks inevitably encounter paused RNAPII soon after replication initiates.

View Article and Find Full Text PDF

Topoisomerase II (TOP2) unlinks chromosomes during vertebrate DNA replication. TOP2 "poisons" are widely used chemotherapeutics that stabilize TOP2 complexes on DNA, leading to cytotoxic DNA breaks. However, it is unclear how these drugs affect DNA replication, which is a major target of TOP2 poisons.

View Article and Find Full Text PDF

Replication-coupled DNA repair and damage tolerance mechanisms overcome replication stress challenges and complete DNA synthesis. These pathways include fork reversal, translesion synthesis, and repriming by specialized polymerases such as PRIMPOL. Here, we investigated how these pathways are used and regulated in response to varying replication stresses.

View Article and Find Full Text PDF

Human papillomaviruses (HPVs) are small DNA viruses that infect basal epithelial cells and are the causative agents of cervical, anogenital, as well as oral cancers. High-risk HPVs are responsible for nearly half of all virally induced cancers. Viral replication and amplification are intimately linked to the stratified epithelium differentiation program.

View Article and Find Full Text PDF

5-Hydroxymethylcytosine (5hmC) binding, ES-cell-specific (HMCES) crosslinks to apurinic or apyrimidinic (AP, abasic) sites in single-strand DNA (ssDNA). To determine whether HMCES responds to the ssDNA abasic site in cells, we exploited the activity of apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3A (APOBEC3A). APOBEC3A preferentially deaminates cytosines to uracils in ssDNA, which are then converted to abasic sites by uracil DNA glycosylase.

View Article and Find Full Text PDF

Inositol diphosphates (PP-IPs), also known as inositol pyrophosphates, are high-energy cellular signaling codes involved in nutrient and regulatory responses. We report that the evolutionarily conserved gene product, Vip1, possesses autonomous kinase and pyrophosphatase domains capable of synthesis and destruction of D-1 PP-IPs. Our studies provide atomic-resolution structures of the PP-IP products and unequivocally define that the Vip1 gene product is a highly selective 1-kinase and 1-pyrophosphatase enzyme whose activities arise through distinct active sites.

View Article and Find Full Text PDF

Abasic sites are one of the most common DNA lesions. All known abasic site repair mechanisms operate only when the damage is in double-stranded DNA. Here, we report the discovery of 5-hydroxymethylcytosine (5hmC) binding, ESC-specific (HMCES) as a sensor of abasic sites in single-stranded DNA.

View Article and Find Full Text PDF

High-risk human papillomaviruses (HPVs) activate the ataxia telangiectasia mutated-dependent (ATM) DNA damage response as well as the ataxia telangiectasia mutated-dependent DNA-related (ATR) pathway in the absence of external DNA damaging agents for differentiation-dependent genome amplification. Through the use of comet assays and pulsed-field gel electrophoresis, our studies showed that these pathways are activated in response to DNA breaks induced by the viral proteins E6 and E7 alone and independently of viral replication. The majority of these virally induced DNA breaks are present in cellular DNAs and only minimally in HPV episomes.

View Article and Find Full Text PDF

Human papillomaviruses infect stratified epithelia and link their productive life cycle to the differentiation state of the host cell. Productive viral replication or amplification is restricted to highly differentiated suprabasal cells and is dependent on the activation of the ATM DNA damage pathway. The ATM pathway has three arms that can act independently of one another.

View Article and Find Full Text PDF

Amplification of human papillomaviruses (HPV) is dependent on the ATM DNA damage pathway. In cells with impaired p53 activity, DNA damage repair requires the activation of p38MAPK along with MAPKAP kinase 2 (MK2). In HPV-positive cells, phosphorylation of p38 and MK2 proteins was induced along with relocalization to the cytoplasm.

View Article and Find Full Text PDF

Human papillomaviruses (HPV) infect stratified epithelia and link their life cycles to epithelial differentiation. The HPV E5 protein plays a role in the productive phase of the HPV life cycle but its mechanism of action is still unclear. We identify a new binding partner of E5, A4, using a membrane-associated yeast-two hybrid system.

View Article and Find Full Text PDF

Human papillomaviruses (HPV) activate the ataxia telangiectasia mutated (ATM)-dependent DNA damage response to induce viral genome amplification upon epithelial differentiation. Our studies show that along with members of the ATM pathway, HPV proteins also localize factors involved in homologous DNA recombination to distinct nuclear foci that contain HPV genomes and cellular replication factors. These studies indicate that HPV activates the ATM pathway to recruit repair factors to viral genomes and allow for efficient replication.

View Article and Find Full Text PDF

High-risk human papillomaviruses (HPVs) infect stratified epithelia to establish persistent infections that maintain low-copy-number episomes in infected basal cells. Amplification of viral genomes occurs upon keratinocyte differentiation, followed by virion synthesis. During persistent HPV infections, viral proteins act to evade surveillance by both innate and adaptive immune responses.

View Article and Find Full Text PDF

Human papillomaviruses (HPVs) are the causative agents of several important genital and other mucosal cancers. The HPV16 E7 gene encodes a viral oncogene that is necessary for the continued growth of cancer cells, but its role in the normal, differentiation-dependent life cycle of the virus is not fully understood. The function of E7 in the viral life cycle was examined using a series of mutations of E7 created in the context of the complete HPV16 genome.

View Article and Find Full Text PDF

Infection by human papillomaviruses (HPV) leads to the formation of benign lesions, warts, and in some cases, cervical cancer. The formation of these lesions is dependent upon increased expression of proangiogenic factors. Angiogenesis is linked to tissue hypoxia through the activity of the oxygen-sensitive hypoxia-inducible factor 1α (HIF-1α).

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiong5629kdsnafrsqek42l24l3eeum7mimb): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once