In the fields of pharmacology and life sciences, it is essential to study how prescribed drugs interact with carrier proteins in human serum albumin. The current study has evaluated the binding properties of rhodanine derivative; (z)-2-(4-(5-((3-(3-chlorophenyl)-1-phenyl-1H-pyrazol-4-oxo-2-thioxothiazolidin-3-yl)benzamido)acetic acid (P3CL) on bovine serum albumin (BSA) by biophysical approach. BSA is a homology model of Human serum albumin.
View Article and Find Full Text PDFRhodanine is an important scaffold in medicinal chemistry and it act as potent anticancer agent and other pharmacological effects. In pharmacokinetics and pharmacodynamics studies of the drug, the drug binding properties on serum protein is crucial for producing better drug. This study was designed to explore the binding interactions between the Rhodanine derivative (P4OC) on Bovine Serum Albumin (BSA).
View Article and Find Full Text PDFA simple rhodanine derived fluorophoric unit has been designed for selective detection of Ag and I ions in DMSO-HO medium. The sensor R1 showed an obvious "turn-on" fluorescence response toward Ag due to the inhibition of both C-N single bond free rotation, internal charge transfer (ICT) and the formation of chelation enhanced fluorescence (CHEF) effects. The fluorescence quantum yield (Φ) was increased from 0.
View Article and Find Full Text PDF