Recent advances in quantum technologies have enabled the precise control of single trapped molecules on the quantum level. Exploring the scope of these new technologies, we studied theoretically the implementation of qubits and clock transitions in the spin, rotational, and vibrational degrees of freedom of molecular nitrogen ions including the effects of magnetic fields. The relevant spectroscopic transitions span six orders of magnitude in frequency, illustrating the versatility of the molecular spectrum for encoding quantum information.
View Article and Find Full Text PDFQuantum-logic techniques used to manipulate quantum systems are now increasingly being applied to molecules. Previous experiments on single trapped diatomic species have enabled state detection with excellent fidelities and highly precise spectroscopic measurements. However, for complex molecules with a dense energy-level structure improved methods are necessary.
View Article and Find Full Text PDFTrapped atoms and ions, which are among the best-controlled quantum systems, find widespread applications in quantum science. For molecules, a similar degree of control is currently lacking owing to their complex energy-level structure. Quantum-logic protocols in which atomic ions serve as probes for molecular ions are a promising route for achieving this level of control, especially for homonuclear species that decouple from blackbody radiation.
View Article and Find Full Text PDFWe present theoretical and experimental progress towards a new approach for the precision spectroscopy, coherent manipulation and state-to-state chemistry of single isolated molecular ions in the gas phase. Our method uses a molecular beam for creating packets of rotationally cold neutrals from which a single molecule is state-selectively ionized and trapped inside a radiofrequency ion trap. In addition to the molecular ion, a single co-trapped atomic ion is used to cool the molecular external degrees of freedom to the ground state of the trap and to detect the molecular state using state-selective coherent motional excitation from a modulated optical-dipole force acting on the molecule.
View Article and Find Full Text PDFInverse internal conversion followed by recurrent fluorescence was observed as a fast decay (10 μs range) in the time profile of neutral yields from photo-excited C4(-) molecular ions. We also elucidated the contribution of such electronic radiative cooling to the C4(-) ions with internal energy far below the detachment threshold by an alternative novel approach, observing the laser wavelength and storage time dependence (ms range) of the total yield of the photo-induced neutrals.
View Article and Find Full Text PDF