Cystic fibrosis (CF) is a genetic disorder that primarily affects the respiratory, digestive, and reproductive systems. In the United States, approximately 32,000 individuals, spanning both children and adults, suffer from CF, and roughly 1,000 new cases are diagnosed annually. The current gold standard for CF diagnosis is the sweat test, yet this method is plagued by issues such as being time-consuming, expensive, challenging to replicate, and lacking treatment monitoring capabilities.
View Article and Find Full Text PDFCreating multifunctional concrete materials with advanced functionalities and mechanical tunability is a critical step toward reimagining the traditional civil infrastructure systems. Here, the concept of nanogenerator-integrated mechanical metamaterial concrete is presented to design lightweight and mechanically tunable concrete systems with energy harvesting and sensing functionalities. The proposed metamaterial concrete systems are created via integrating the mechanical metamaterial and nano-energy-harvesting paradigms.
View Article and Find Full Text PDFTriboelectric nanogenerators have received significant research attention in recent years. Structural design plays a critical role in improving the energy harvesting performance of triboelectric nanogenerators. Here, we develop the magnetic capsulate triboelectric nanogenerators (MC-TENG) for energy harvesting under undesirable mechanical excitations.
View Article and Find Full Text PDFThere is a critical shortage in research needed to explore a new class of multifunctional structural components that respond to their environment, empower themselves and self-monitor their condition. Here, we propose the novel concept of triboelectric nanogenerator-enabled structural elements (TENG-SEs) to build the foundation for the next generation civil infrastructure systems with intrinsic sensing and energy harvesting functionalities. In order to validate the proposed concept, we develop proof-of-concept multifunctional composite rebars with built-in triboelectric nanogenerator mechanisms.
View Article and Find Full Text PDFDiscovering novel multifunctional metamaterials with energy harvesting and sensing functionalities is likely to be the next technological evolution of the metamaterial science. Here, we introduce a novel concept called self-aware composite mechanical metamaterial (SCMM) that can transform mechanical metamaterials into nanogenerators and active sensing mediums. In pursuit of this goal, we examine new paradigms where finely tailored and seamlessly integrated self-recovering snapping microstructures composed of topologically different triboelectric materials can form self-powering and self-sensing meta-tribomaterial systems.
View Article and Find Full Text PDFThis study investigates the feasibility of using a new self-powered sensing and data logging system for postoperative monitoring of spinal fusion progress. The proposed diagnostic technology directly couples a piezoelectric transducer signal into a Fowler-Nordheim (FN) quantum tunneling-based synchronized dynamical system to record the mechanical usage of spinal fixation devices. The operation of the proposed implantable FN sensor-data-logger is completely self-powered by harvesting the energy from the micro-motion of the spine during the course of fusion.
View Article and Find Full Text PDFSensors (Basel)
November 2019
The massive amount of data generated by structural health monitoring (SHM) systems usually affects the system's capacity for data transmission and analysis. This paper proposes a novel concept based on the probability theory for data reduction in SHM systems. The beauty salient feature of the proposed method is that it alleviates the burden of collecting and analysis of the entire strain data via a relative damage approach.
View Article and Find Full Text PDF