Publications by authors named "Kaustubh Shukla"

The integration of blockchain technology with the IoToffers numerous opportunities to enhance the privacy, security, and integrity. This study comprehensively analyze the challenges, scope, and potential solutions associated with integrating blockchain technology and the IoT, with a specific emphasis on nuclear energy applications. We discuss the roles and various aspects of blockchain and the IoT, highlighting their multiple dimensions and applications.

View Article and Find Full Text PDF

Replication forks stalled at co-transcriptional R-loops can be restarted by a mechanism involving fork cleavage-religation cycles mediated by MUS81 endonuclease and DNA ligase IV (LIG4), which presumably relieve the topological barrier generated by the transcription-replication conflict (TRC) and facilitate ELL-dependent reactivation of transcription. Here, we report that the restart of R-loop-stalled replication forks via the MUS81-LIG4-ELL pathway requires senataxin (SETX), a helicase that can unwind RNA:DNA hybrids. We found that SETX promotes replication fork progression by preventing R-loop accumulation during S-phase.

View Article and Find Full Text PDF

Transcription-replication conflicts (TRCs) induce formation of cotranscriptional RNA:DNA hybrids (R-loops) stabilized by G-quadruplexes (G4s) on the displaced DNA strand, which can cause fork stalling. Although it is known that these stalled forks can resume DNA synthesis in a process initiated by MUS81 endonuclease, how TRC-associated G4/R-loops are removed to allow fork passage remains unclear. Here, we identify the mismatch repair protein MutSβ, an MLH1-PMS1 heterodimer termed MutLβ, and the G4-resolving helicase FANCJ as factors that are required for MUS81-initiated restart of DNA replication at TRC sites in human cells.

View Article and Find Full Text PDF

R-loops are three-stranded nucleic acid structures composed of an RNA:DNA hybrid and displaced DNA strand. These structures can halt DNA replication when formed co-transcriptionally in the opposite orientation to replication fork progression. A recent study has shown that replication forks stalled by co-transcriptional R-loops can be restarted by a mechanism involving fork cleavage by MUS81 endonuclease, followed by ELL-dependent reactivation of transcription, and fork religation by the DNA ligase IV (LIG4)/XRCC4 complex.

View Article and Find Full Text PDF

The persistence of Mycobacterium tuberculosis (Mtb) is a major problem in managing tuberculosis (TB). Host-generated nitric oxide (NO) is perceived as one of the signals by Mtb to reprogram metabolism and respiration for persistence. However, the mechanisms involved in NO sensing and reorganizing Mtb's physiology are not fully understood.

View Article and Find Full Text PDF

Unresolved G-quadruplex (G4) DNA secondary structures impede DNA replication and can lead to DNA breaks and to genome instability. Helicases are known to unwind G4 structures and thereby facilitate genome duplication. Escherichia coli UvrD is a multifunctional helicase that participates in DNA repair, recombination and replication.

View Article and Find Full Text PDF

G-quadruplex (G4) secondary structures have been implicated in various biological processes, including gene expression, DNA replication and telomere maintenance. However, unresolved G4 structures impede replication progression which can lead to the generation of DNA double-strand breaks and genome instability. Helicases have been shown to resolve G4 structures to facilitate faithful duplication of the genome.

View Article and Find Full Text PDF