Publications by authors named "Kaustubh S Rane"

We introduce a molecular simulation method to compute the interfacial properties of model systems within the isothermal-isobaric ensemble. We use a free-energy-based approach in which Monte Carlo simulations are employed to obtain an interface potential associated with the growth of a fluid film from a solid substrate. The general method is implemented within "spreading" and "drying" frameworks.

View Article and Find Full Text PDF

We study the role of dispersion and electrostatic interactions in the wetting behavior of ionic liquids on non-ionic solid substrates. We consider a simple model of an ionic liquid consisting of spherical ions that interact via Lennard-Jones and Coulomb potentials. Bulk and interfacial properties are computed for five fluids distinguished by the strength of the electrostatic interaction relative to the dispersion interaction.

View Article and Find Full Text PDF

We study the liquid-vapor saturation properties of room temperature ionic liquids (RTILs) belonging to the homologous series 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([Cnmim][NTf2]) using Monte Carlo simulation. We examine the effect of temperature and cation alkyl chain length n on the saturated densities, vapor pressures, and enthalpies of vaporization. These properties are explicitly calculated for temperatures spanning from 280 to 1000 K for RTILs with n = 2, 4, 6, 8, 10, and 12.

View Article and Find Full Text PDF

We discuss molecular simulation methods for computing the phase coexistence properties of complex molecules. The strategies that we pursue are histogram-based approaches in which thermodynamic properties are related to relevant probability distributions. We first outline grand canonical and isothermal-isobaric methods for directly locating a saturation point at a given temperature.

View Article and Find Full Text PDF

We discuss Monte Carlo (MC) simulation methods for calculating liquid-vapor saturation properties of ionic liquids. We first describe how various simulation tools, including reservoir grand canonical MC, growth-expanded ensemble MC, distance-biasing, and aggregation-volume-biasing, are used to address challenges commonly encountered in simulating realistic models of ionic liquids. We then indicate how these techniques are combined with histogram-based schemes for determining saturation properties.

View Article and Find Full Text PDF

We introduce general Monte Carlo simulation methods for determining the wetting and drying properties of model systems. We employ an interface-potential-based approach in which the interfacial properties of a system are related to the surface excess free energy of a thin fluid film in contact with a surface. Two versions of this approach are explored: a "spreading" method focused on the growth of a thin liquid film from a surface in a mother vapor and a "drying" method focused on the growth of a thin vapor film from a surface in a mother liquid.

View Article and Find Full Text PDF