Publications by authors named "Kaushik Sivaramakrishnan"

The release of bromine-free hydrocarbons and gases is a major challenge faced in the thermal recycling of e-waste due to the corrosive effects of produced HBr. Metal oxides such as FeO (hematite) are excellent debrominating agents, and they are copyrolyzed along with tetrabromophenol (TBP), a lesser used brominated flame retardant that is a constituent of printed circuit boards in electronic equipment. The pyrolytic (N) and oxidative (O) decomposition of TBP with FeO has been previously investigated with thermogravimetric analysis (TGA) at four different heating rates of 5, 10, 15, and 20 °C/min, and the mass loss data between room temperature and 800 °C were reported.

View Article and Find Full Text PDF

The principal objective in the treatment of e-waste is to capture the bromine released from the brominated flame retardants (BFRs) added to the polymeric constituents of printed circuits boards (PCBs) and to produce pure bromine-free hydrocarbons. Metal oxides such as calcium hydroxide (Ca(OH)) have been shown to exhibit high debromination capacity when added to BFRs in e-waste and capturing the released HBr. Tetrabromobisphenol A (TBBA) is the most commonly utilized model compound as a representative for BFRs.

View Article and Find Full Text PDF

Thermal treatment of bromine-contaminated polymers (, as in e-waste) with metal oxides is currently deployed as a mainstream strategy in recycling and resources recovery from these objects. The underlying aim is to capture the bromine content and to produce pure bromine-free hydrocarbons. Bromine originates from the added brominated flame retardants (BFRs) to the polymeric fractions in printed circuits boards, where tetrabromobisphenol A (TBBA) is the most utilized BFR.

View Article and Find Full Text PDF

Extracting meaningful information from spectroscopic data is key to species identification as a first step to monitoring chemical reactions in unknown complex mixtures. Spectroscopic data obtained over multiple process modes (temperature, residence time) from different sensors [Fourier transform infrared (FTIR), proton nuclear magnetic resonance (H NMR)] comprise hidden complementary information of the underlying chemical system. This work proposes an approach to jointly capture these hidden patterns in a structure-preserving and interpretable manner using coupled non-negative tensor factorization to achieve uniqueness in decomposition.

View Article and Find Full Text PDF