Front Biosci (Landmark Ed)
January 2012
Human beings suffer from a myriad of disorders caused by biochemical or biophysical alteration of physiological systems leading to organ failure. For a number of these conditions, stem cells and their enormous reparative potential may be the last hope for restoring function to these failing organ or tissue systems. To harness the potential of stem cells for biotherapeutic applications, we need to work at the size scale of molecules and processes that govern stem cells fate.
View Article and Find Full Text PDFAdult tissues contain quiescent reservoirs of multipotent somatic stem cells and pluripotent embryonic-like stem cells (ELSCs). Credited with regenerative properties gold is used across both -contemporary and -ancient medicines. Here, we show that gold exerted these effects by enhancing the pool of pluripotent ELSC while improving their stemness.
View Article and Find Full Text PDFHuman embryonic stem cells (hESCs) have been extensively discussed in public and scientific communities for their potential in treating diseases and injuries. However, not much has been achieved in turning them into safe therapeutic agents. The hurdles in transforming hESCs to therapies start right with the way these cells are derived and maintained in the laboratory, and goes up-to clinical complications related to need for patient specific cell lines, gender specific aspects, age of the cells, and several post transplantation uncertainties.
View Article and Find Full Text PDFObjectives: Mechanisms underpinning Gram-negative bacterial vaginosis-induced birth anomalies are obscure. Ethical issues limit such studies on peri-implantation-stage human embryos. Here we have used embryoid bodies (EBs) as an in vitro model to examine the effect of Gram-negative bacterial endotoxins/lipopolysaccharides (LPS) on the faithful induction of germ lineages during embryogenesis.
View Article and Find Full Text PDFABSTRACT Embryonic stem cells are considered the mother of all kinds of tissues and cells and it is envisioned as the holy grail of regenerative medicine. However, their use in cell replacement therapies (CRT) has so far been limited and their potentials are yet to be fully realized. The use of human embryonic stem cells (hESC) involves many safety issues pertaining to culture conditions and epigenetic changes.
View Article and Find Full Text PDF