Publications by authors named "Kaushala S Jayawardana"

Plasmalogens are membrane glycerophospholipids with diverse biological functions. Reduced plasmalogen levels have been observed in metabolic diseases; hence, increasing their levels might be beneficial in ameliorating these conditions. Shark liver oil (SLO) is a rich source of alkylglycerols that can be metabolized into plasmalogens.

View Article and Find Full Text PDF

Changes to lipid metabolism are tightly associated with the onset and pathology of Alzheimer's disease (AD). Lipids are complex molecules comprising many isomeric and isobaric species, necessitating detailed analysis to enable interpretation of biological significance. Our expanded targeted lipidomics platform (569 species across 32 classes) allows for detailed lipid separation and characterisation.

View Article and Find Full Text PDF

The incidence of atrial fibrillation (AF) is higher in patients with diabetes. The goal of this study was to assess if the addition of plasma lipids to traditional risk factors could improve the ability to detect and predict future AF in patients with type 2 diabetes. Logistic regression models were used to identify lipids associated with AF or future AF from plasma lipids ( = 316) measured from participants in the ADVANCE trial ( = 3,772).

View Article and Find Full Text PDF

Background: Lipid metabolism is altered in Alzheimer's disease (AD); however, the relationship between AD risk factors (age, APOEɛ4, and gender) and lipid metabolism is not well defined.

Objective: We investigated whether altered lipid metabolism associated with increased age, gender, and APOE status may contribute to the development of AD by examining these risk factors in healthy controls and also clinically diagnosed AD individuals.

Methods: We performed plasma lipidomic profiling (582 lipid species) of the Australian Imaging, Biomarkers and Lifestyle flagship study of aging cohort (AIBL) using liquid chromatography-mass spectrometry.

View Article and Find Full Text PDF

BACKGROUNDStatins have pleiotropic effects on lipid metabolism. The relationship between these effects and future cardiovascular events is unknown. We characterized the changes in lipids upon pravastatin treatment and defined the relationship with risk reduction for future cardiovascular events.

View Article and Find Full Text PDF

Background Although acute coronary syndromes (ACS) are a major cause of morbidity and mortality, relationships with biologically active lipid species potentially associated with plaque disruption/erosion in the context of their lipoprotein carriers are indeterminate. The aim was to characterize lipid species within lipoprotein particles which differentiate ACS from stable coronary artery disease. Methods and Results Venous blood was obtained from 130 individuals with de novo presentation of an ACS (n=47) or stable coronary artery disease (n=83) before coronary catheterization.

View Article and Find Full Text PDF

High-throughput targeted lipid profiling with liquid chromatography-mass spectrometry (LC-MS) has been used extensively to identify associations between plasma lipid species and disease states. Such methods, used to characterize larger clinical cohorts, often suffer from an inability to differentiate isomeric forms of glycerophospholipids that are typically reported as the sum fatty acid carbons and double bonds. Here we report a chromatography gradient coupled with a detailed characterization of the human plasma lipidome to provide improved resolution and identification of 636 lipid species, including previously unreported species, in a 15-min analysis.

View Article and Find Full Text PDF

Background: Plasma lipidomic measures may enable improved prediction of cardiovascular outcomes in secondary prevention. The aim of this study is to determine the association of plasma lipidomic measurements with cardiovascular events and assess their potential to predict such events.

Methods: Plasma lipids (n = 342) were measured in a retrospective subcohort (n = 5,991) of the LIPID study.

View Article and Find Full Text PDF

Nonalcoholic fatty liver disease (NAFLD) comprises fat-accumulating conditions within hepatocytes that can cause severe liver damage and metabolic comorbidities. Studies suggest that mitochondrial dysfunction contributes to its development and progression and that the hepatic lipidome changes extensively in obesity and in NAFLD. To gain insight into the relationship between lipid metabolism and disease progression through different stages of NAFLD, we performed lipidomic analysis of plasma and liver biopsy samples from obese patients with nonalcoholic fatty liver (NAFL) or nonalcoholic steatohepatitis (NASH) and from those without NAFLD.

View Article and Find Full Text PDF