Publications by authors named "Kaushala Mishra"

Flavonoids are polyphenolic phytochemicals, which occur naturally in plants and possess both anti-oxidant and pro-oxidant properties. Flavonoids are gaining increasing popularity in the pharmaceutical industry as healthy and cost-effective compounds. Flavonoids show beneficial pharmacological activities in the treatment and prevention of various types of diseases.

View Article and Find Full Text PDF

Radiobiological research continues to focus on finding newer strategies for enhanced killing of tumor cells by ionizing radiation. In recent years, chemotherapeutic drugs have been found to possess the capabilities to sensitize tumor cells without affecting the normal cells. There have been increasing research efforts to identify novel and nontoxic compounds which cause minimal or no harm to normal cells but maximize tumor toxicity response to radiation exposure.

View Article and Find Full Text PDF

The hypoxic tumor microenvironment is one of the major causes of the enhanced chemoresistant and radioresistant behavior of cancer cells. Therefore, the hypoxia-induced factor (HIF) pathway can be endorsed, for not only the malignant phenotype of the cells, but also its metastatic potential. Many drugs targeting the HIF pathways have failed in the clinical setting to demonstrate therapeutic efficacy.

View Article and Find Full Text PDF

Herbal polyphenols have gained increased significance because of the promises they hold in the prevention and treatment of cancer. There exists an enormous opportunity for the screening and valuation of natural dietary compounds in the development of an effective chemopreventive drug and radiosensitizer that may be of practical use for patients undergoing cancer therapy. This study describes the effect of the flavonoid ellagic acid (EA) on gamma-irradiated human breast cancer MCF-7 cells in vitro when administered alone or in combination with radiation.

View Article and Find Full Text PDF

Y220C, a substitution mutation in p53, causes major structural changes in the protein and is known to form a new protein cavity. This cavity is reckoned to accommodate small drug candidates that may play a key role in cancer treatment. Present study was aimed at determining a drug candidate that could inhibit the mutant p53 based on structural drug rationale.

View Article and Find Full Text PDF

In normal functioning of the cell, there is a balance between generation and neutralization of reactive oxygen species (ROS) by endogenous cellular defense machinery. Low levels of ROS inside the cells are required for normal functioning of the cell, which regulate signaling mechanisms involved in mitosis and apoptosis; excess of ROS production may cause oxidative stress leading to damage in vital cellular molecules, namely cytosolic lipids, proteins, and DNA. In the situation of intracellular redox imbalance, molecules of cells are altered by ROS leading to pathogenic state.

View Article and Find Full Text PDF

Breast cancer is the second leading cause of cancer mortality and the most frequent cancer found in women around the globe. The development of breast cancer is a multistep and complicated process that includes the development of ductal and lobular cells into atypical hyperplasia, carcinoma in situ, and invasive carcinoma, with an ability to metastasize. The efficacy of radiotherapy in breast cancer seems to be reduced because of a frequently observed lack of cellular sensitivity to apoptosis.

View Article and Find Full Text PDF

Herbs and other plant-based compounds have increasingly been recognized as useful for the prevention and treatment of cancer. There exists enormous scope for screening and evaluation of herbal/plant products to develop an effective radiosensitizer and radioprotector that is relevant for cancer therapy. Anticancer agents that can effectively trigger the process of cell death in tumor cells need to be developed.

View Article and Find Full Text PDF

Diospyrin diethylether (D7), a bisnaphthoquinonoid derivative, exhibited an oxidative stress-dependent apoptosis in several human cancer cells and tumor models. The present study was aimed at evaluation of the increase in cytosolic calcium [Ca(2+)](c) leading to the apoptotic cell death triggered by D7 in MCF7 human breast carcinoma cells. A phosphotidylcholine-specific phospholipase C (PC-PLC) inhibitor, viz.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to create a (177)Lu-labeled porphyrin derivative for targeted cancer radiotherapy and tested its effectiveness in mouse tumor models.
  • The porphyrin was modified to improve tumor accumulation and was linked with a bi-functional chelating agent to safely deliver the radionuclide (177)Lu, which was chosen for its beneficial decay characteristics.
  • Results indicated high purity and stability of the labeled agent, significant tumor retention, and improved tumor growth control, demonstrating potential for effective cancer treatment.
View Article and Find Full Text PDF

Purpose: This study examined the effect of liposomal encapsulation of (99m)Tc-labeled diethylenetriaminepentaacetic acid (metastable technetium labeled DTPA) on its organ distribution and therapeutic effect of optimized neutral liposomal-DTPA against thorium ((232)Th)-induced liver toxicity and its accumulation in rat animal model.

Materials And Methods: (99m)Tc-DTPA was encapsulated in neutral (dipalmitoylphosphatidylcholine:cholesterol) and positively (dipalmitoylphosphatidylcholine:cholesterol:stearylamine) charged liposomes using thin film hydration method. Comparative efficacy of liposomal and free DTPA (11.

View Article and Find Full Text PDF

TQ (thymoquinone), the bioactive constituent of black seed (Nigella sativa), has been shown to inhibit the growth of various human cancers both in vitro and in vivo. This study reports the radiosensitizing effect of TQ on human breast carcinoma cells (MCF7 and T47D). TQ in combination with single dose of ionizing radiation (2.

View Article and Find Full Text PDF

Purpose: With increasing utilisation of nuclear technologies in power production, medical and industrial applications, and in a scenario of nuclear terrorism/war, there is an enhanced likelihood of accidental radiation exposure to occupational workers, patients and public. The consequent health effects of the radiation exposure are resultant of interaction of radiation with biological systems and subsequent radiation injury. The present review discusses the knowledge gained in radiation biology that can be exploited for better treatment and management of radiation accident victims.

View Article and Find Full Text PDF

Purpose: An ethanolic extract of Nigella sativa L. (EE-NS) was investigated for its antioxidant properties and radioprotective effects against gamma-radiation-induced oxidative damage.

Materials And Methods: The radical scavenging activity of the extract was measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH), deoxyribose degradation and plasmid relaxation assays in a cell-free system.

View Article and Find Full Text PDF

Thorium-232 ((232)Th), a natural radionuclide from the actinide family, is abundantly present in monazite and other ores. It is used as one of the prime fuel materials in nuclear industry and may pose an exposure risk to nuclear workers and members of the public. Human erythrocytes, as a classical cellular membrane model, were coincubated with (232)Th in order to elucidate whether this naturally occurring important radionuclide produced perturbations to cell membrane.

View Article and Find Full Text PDF

The aim of this study was to develop a (188)Re-labeled porphyrin-based tumor-specific agent and to evaluate its biologic behavior, including tumor-regressing effectiveness, in mouse tumor models for possible use in achieving targeted cancer radiotherapy. (188)Re was obtained from an alumina-column-based (188)W-(188)Re generator constructed in-house. The compound, 5,10,15,20-tetrakis[3,4-bis(carboxymethyleneoxy)phenyl]porphyrin, was synthesized and labeled with (188)ReO(4)(-).

View Article and Find Full Text PDF

This study evaluates the potential of ellagic acid (EA) as an enhancer of radiation-induced apoptosis in cancer cells. HeLa cells treated with EA and gamma radiation showed increased superoxide generation, upregulated p53 protein expression, and decreased antioxidant enzymes. We also found that EA and radiation enhance capase-3 activity via oxidative stress, increased intracellular calcium levels, and phospholipase C and cause a drop in mitochondrial potential.

View Article and Find Full Text PDF

Purpose: Thorium ((232)Th), a heavy metal radionuclide that targets the liver and skeleton, has been shown to accumulate in the central nervous system at low levels. The present study was aimed to investigate neurobehavioural and neurochemical changes in mice treated with (232)Th at sub-lethal doses.

Materials And Methods: Swiss albino mice were administered intraperitoneally with thorium nitrate.

View Article and Find Full Text PDF

The aim of the present study is to determine the dose distribution in gamma irradiation chambers by chemical dosimetry and to establish its correlation with biological dosimetry. The dose-distribution studies of these two gamma chambers show that compared to the center point of the chambers, the dose rate was 17%-22% higher at the circumference. Moreover, the dose rate was 12%-18% lower at the bottom and top positions compared to the center point.

View Article and Find Full Text PDF

A simple, single-step, extrusion-free protocol for preparing doxorubicin-loaded liposomes (100150 nm), based on the ethanol injection method (EIM), is described. Efficient encapsulation of doxorubicin (up to 98%) was obtained concomitantly with liposome preparation avoiding the need for an additional loading step. Parameters such as stock concentration of phospholipid, injection ratio, lipid composition, and drug-to-phospholipid ratio affected the resultant liposome size and magnitude of doxorubicin encapsulation.

View Article and Find Full Text PDF

Purpose: Thorium ((232)Th, IV) preferentially accumulates in the liver, femur and spleen, which necessitates evaluation of its toxic effect in these organs. The present study was aimed at evaluation of liver function, oxidative stress and histological alterations in these organs.

Materials And Methods: Swiss albino mice were administered either with Thorium nitrate (10 mg/kg body weight/day equivalent to 1,090 pCi/kg body weight/day) for 30 days (1/40th dose of LD(50/30); the dose of thorium required to kill 50% of the test cohort within 30 days) intraperitoneally or with calcium salt of diethylenetriamine pentaacetate (Ca-DTPA, 100 micromole/kg body/weight) intravenously or both.

View Article and Find Full Text PDF

Previous reports from our laboratory have shown that in Swiss female mice exposed to an acute dose (3 Gy) of whole body irradiation (WBI), induced thymic lymphoma (TL) resulted after three to four weeks of exposure. The present study was aimed to further evaluate dependency on gender and effect of age of mice at the time of irradiation on TL incidence. A significant decrease in body weight gain was observed in female mice exposed to WBI, which was found to be correlated with the increase in weight and size of thymus, compared to their respective controls.

View Article and Find Full Text PDF

This study describes the radioprotective ability of a hydrolysate prepared using an enzyme-acid hydrolysis method from the green mussel Perna viridis in terms of its ability to prevent radiation-induced damage in plasmid DNA, cell death, reactive oxygen species (ROS) formation, and DNA damage in mice lymphocytes. The mussel hydrolysate (MH) present during irradiation showed significant protection from gamma-radiation-induced strand breaks in plasmid DNA as evaluated by gel electrophoresis. Viability studies by trypan blue dye exclusion and MTT assay showed that preincubation of mice splenic lymphocytes with MH protected them from gamma-radiation-mediated killing.

View Article and Find Full Text PDF

Although the kidneys are the main target organs for uranium (U) toxicity, recent studies have shown that U can cross the blood-brain barrier to accumulate in the brain. Uranyl nitrate (U-238)induced oxidative damage was investigated in brain and bone of Wistar rats after intraperitoneal injection of uranyl nitrate at acute doses either nephrotoxic (576 microg of U/kg body weight) or subnephrotoxic (144 microg U/kg body weight). The health effects of U administration at 576 microg of U/kg body weight were seen in terms of decrease in food intake and no gain in body weight compared to respective controls.

View Article and Find Full Text PDF

The development of radio-resistant tumor cells might be overcome by the use of tumor selective cytotoxic agents in combination with radiation treatment of cancer. Thus, we are exploring the radiomodifying potential of D7, a tumor-inhibitory compound derived from a plant product, diospyrin, in breast carcinoma cells, MCF-7. The present study indicated that D7 could enhance the radiation-induced cytotoxicity and apoptosis through down-regulation of the anti-apoptotic Bcl-2 and COX-2 gene expression, and up-regulation of pro-apoptotic genes, like p53 and p21.

View Article and Find Full Text PDF