Publications by authors named "Kaushal Baid"

SARS-CoV-2 3C-like protease (3CL or M) cleaves the SARS-CoV-2 polyprotein and >300 intracellular host proteins to enhance viral replication. By lytic cell death following gasdermin (GSDM) pore formation in cell membranes, antiviral pyroptosis decreases 3CL expression and viral replication. Unexpectedly, 3CL and nucleocapsid proteins undergo unconventional secretion from infected cells via caspase-activated GSDMD/E pores in the absence of cell lysis.

View Article and Find Full Text PDF

Emerging viruses pose significant threats to human health and the global economy. In the past two decades, three different coronaviruses have emerged to cause worldwide public health concerns. The advent of high throughput genomic and transcriptomic technologies facilitated the study of virus-host interactions, accelerating the development of diagnostics, vaccines, and therapeutics.

View Article and Find Full Text PDF

The emergence of zoonotic viruses like severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and SARS-CoV-2 have significantly impacted global health and economy. The discovery of other viruses in wildlife reservoir species present a threat for future emergence in humans and animals. Therefore, assays that are less reliant on virus-specific information, such as neutralization assays, are crucial to rapidly develop diagnostics, understand virus replication and pathogenicity, and assess the efficacy of therapeutics against newly emerging viruses.

View Article and Find Full Text PDF

Molecular studies in bats have led to the discovery of antiviral adaptations that may explain how some bat species have evolved enhanced immune tolerance towards viruses. Accumulating data suggest that some bat species have also evolved remarkable features of longevity and low rates of cancer. Furthermore, recent research strongly suggests that discovering immune adaptations in bat models can be translated to develop immune modulators and recognize alternate therapeutic strategies for diseases affecting humans.

View Article and Find Full Text PDF

Apoptosis signal-regulating kinase 1 (ASK1)/MAP3K5 is a stress response kinase that is activated by various stimuli. It is known as an upstream activator of p38- Mitogen-activated protein kinase (p38MAPK) and c-Jun N-terminal kinase (JNK) that are reactive oxygen species (ROS)-induced kinases. Accumulating evidence show that ROS accumulate in virus-infected cells.

View Article and Find Full Text PDF
Article Synopsis
  • Some people who get COVID-19 have really different reactions, from feeling fine to getting really sick or even dying.
  • Research shows that some genes from Neanderthals can make it more likely for someone to get very sick from COVID-19.
  • Scientists studied specific parts of these genes to find out which ones might be causing these bad reactions to the virus and discovered four important ones that could help us understand more about how our genes affect COVID-19 severity.
View Article and Find Full Text PDF

Cellular entry receptors for bat MERS-CoV-like viruses NeoCoV and PDF-2180 were unknown, leaving their zoonotic potential ambiguous. A recent study by Xiong et al. published in Nature identified bat ACE2 as the cellular entry receptor for both viruses, highlighting the ability of coronaviruses to utilize a range of entry receptors.

View Article and Find Full Text PDF
Article Synopsis
  • SARS-CoV-2, the virus responsible for COVID-19, may harm lung cells by damaging mitochondria, leading to cell death and impaired oxygen regulation in the body.
  • The study investigated how SARS-CoV-2 and its proteins affect cell processes like apoptosis (cell death), mitochondrial function, and hypoxic pulmonary vasoconstriction (the body’s way to control blood flow in response to low oxygen).
  • Findings showed that SARS-CoV-2 disrupts mitochondrial functions and activates pathways that promote cell death, affecting energy production and overall lung health very shortly after infection.
View Article and Find Full Text PDF

Background: SARS-CoV-2 Omicron variant of concern (VOC) has evolved multiple mutations within the spike protein, raising concerns of increased antibody evasion. In this study, we assessed the neutralization potential of COVID-19 convalescent sera and sera from vaccinated individuals against ancestral SARS-CoV-2 and VOCs.

Methods: The neutralizing activity of sera from 65 coronavirus disease (COVID-19) vaccine recipients and convalescent individuals against clinical isolates of ancestral SARS-CoV-2 and Beta, Delta, and Omicron VOCs was assessed using a micro-neutralization assay.

View Article and Find Full Text PDF

Type I interferons (IFNs) are our first line of defense against virus infection. Recent studies have suggested the ability of SARS-CoV-2 proteins to inhibit IFN responses. Emerging data also suggest that timing and extent of IFN production is associated with manifestation of COVID-19 severity.

View Article and Find Full Text PDF

Type 1 interferon (IFN) plays a critical role in early antiviral defense and priming of adaptive immunity by signaling upregulation of host antiviral IFN-stimulated genes (ISGs). Certain stimuli trigger strong activation of IFN regulatory factor 3 (IRF3) and direct upregulation of ISGs in addition to IFN. It remains unclear why some stimuli are stronger activators of IRF3 and how this leads to IFN-independent antiviral protection.

View Article and Find Full Text PDF

Since its emergence in Wuhan, China, in December 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected ≈6 million persons worldwide. As SARS-CoV-2 spreads across the planet, we explored the range of human cells that can be infected by this virus. We isolated SARS-CoV-2 from 2 infected patients in Toronto, Canada; determined the genomic sequences; and identified single-nucleotide changes in representative populations of our virus stocks.

View Article and Find Full Text PDF

The role of bats in the enzootic cycle of Lyme disease and relapsing fever-causing bacteria is a matter of speculation. In Canada, sensu stricto (ss) is the genospecies that is responsible for most cases of Lyme disease in humans. In this study, we determined if big brown bats, have been exposed to spirochetes from the genus .

View Article and Find Full Text PDF

Purpose Of Review: Middle East respiratory syndrome coronavirus (MERS-CoV) emerged in 2012 and is listed in the World Health Organization's blueprint of priority diseases that need immediate research. Camels are reservoirs of this virus, and the virus spills over into humans through direct contact with camels. Human-to-human transmission and travel-associated cases have been identified as well.

View Article and Find Full Text PDF

Nucleic acids are potential pathogen-associated or danger-associated molecular patterns that modulate immune responses and the development of autoimmune disorders. Class A scavenger receptors (SR-As) are a diverse group of pattern recognition receptors that recognize a variety of polyanionic ligands including nucleic acids. While SR-As are important for the recognition and internalization of extracellular dsRNA, little is known about extracellular DNA, despite its association with chronic infections and autoimmune disorders.

View Article and Find Full Text PDF

dsRNA is a potent trigger of innate immune signaling, eliciting effects within virally infected cells and after release from dying cells. Given its inherent stability, extracellular dsRNA induces both local and systemic effects. Although the class A scavenger receptors (SR-As) mediate dsRNA entry, it is unknown whether they contribute to signaling beyond ligand internalization.

View Article and Find Full Text PDF

Background: The increasing incidence of Type 2 diabetes mellitus globally has collaterally increased the incidence of diabetes-associated complications such as neuropathy. Oxidative stress induced DNA damage is one of the mechanisms implicated in the pathogenesis of diabetic complications. Here we aimed to evaluate the extent of DNA damage in diabetes patients with and without clinical neuropathy using the Cytokinesis Block Micronucleus Cytome assay, in a group of South Indian population.

View Article and Find Full Text PDF