Cellular organization and functions encompass multiple scales in vivo. Emerging high-plex imaging technologies are limited in resolving subcellular biomolecular features. Expansion Microscopy (ExM) and related techniques physically expand samples for enhanced spatial resolution, but are challenging to be combined with high-plex imaging technologies to enable integrative multiscaled tissue biology insights.
View Article and Find Full Text PDFMicroglia are implicated in aging, neurodegeneration, and Alzheimer's disease (AD). Traditional, low-plex, imaging methods fall short of capturing cellular states and interactions in the human brain. We utilized Multiplexed Ion Beam Imaging (MIBI) and data-driven analysis to spatially map proteomic cellular states and niches in healthy human brain, identifying a spectrum of microglial profiles, called the microglial state continuum (MSC).
View Article and Find Full Text PDFActa Neuropathol Commun
November 2022
Neurodegenerative disorders are characterized by phenotypic changes and hallmark proteopathies. Quantifying these in archival human brain tissues remains indispensable for validating animal models and understanding disease mechanisms. We present a framework for nanometer-scale, spatial proteomics with multiplex ion beam imaging (MIBI) for capturing neuropathological features.
View Article and Find Full Text PDFSynaptic molecular characterization is limited for Alzheimer’s disease (AD). Our newly invented mass cytometry–based method, synaptometry by time of flight (SynTOF), was used to measure 38 antibody probes in approximately 17 million single-synapse events from human brains without pathologic change or with pure AD or Lewy body disease (LBD), nonhuman primates (NHPs), and PS/APP mice. Synaptic molecular integrity in humans and NHP was similar.
View Article and Find Full Text PDFNext-generation tools for multiplexed imaging have driven a new wave of innovation in understanding how single-cell function and tissue structure are interrelated. In previous work, we developed multiplexed ion beam imaging by time of flight, a highly multiplexed platform that uses secondary ion mass spectrometry to image dozens of antibodies tagged with metal reporters. As instrument throughput has increased, the breadth and depth of imaging data have increased as well.
View Article and Find Full Text PDFUnderstanding tissue structure and function requires tools that quantify the expression of multiple proteins while preserving spatial information. Here, we describe MIBI-TOF (multiplexed ion beam imaging by time of flight), an instrument that uses bright ion sources and orthogonal time-of-flight mass spectrometry to image metal-tagged antibodies at subcellular resolution in clinical tissue sections. We demonstrate quantitative, full periodic table coverage across a five-log dynamic range, imaging 36 labeled antibodies simultaneously with histochemical stains and endogenous elements.
View Article and Find Full Text PDFInduced pluripotent stem (iPS) cells may be of use in regenerative medicine. However, the low efficiency of reprogramming is a major impediment to the generation of patient-specific iPS cell lines. Here we report the first selection system for the isolation of human iPS cells.
View Article and Find Full Text PDFDuring human development, signals that govern lineage specification versus expansion of cells committed to a cell fate are poorly understood. We demonstrate that activation of canonical Wnt signaling by Wnt3a promotes proliferation of human embryonic stem cells (hESCs)--precursors already committed to the hematopoietic lineage. In contrast, noncanonical Wnt signals, activated by Wnt11, control exit from the pluripotent state and entry toward mesoderm specification.
View Article and Find Full Text PDFThe cellular mechanism and target cell affected by stromal microenvironments in augmenting hematopoietic specification from pluripotent human embryonic stem cells (hESCs) has yet to be evaluated. Here, in contrast to aorta-gonad-mesonephros-derived S62 stromal cells, OP9 cells inhibit apoptosis and also augment the proliferation of hemogenic precursors prospectively isolated from human embryoid bodies. In addition, OP9 stroma supported cells within the primitive hematopoietic compartment by inhibiting apoptosis of CD45(+)CD34(+) cells committed to the hematopoietic lineage, but have no effect on more mature blood (CD45(+)CD34(-)) cells.
View Article and Find Full Text PDFDistinctive properties of stem cells are not autonomously achieved, and recent evidence points to a level of external control from the microenvironment. Here, we demonstrate that self-renewal and pluripotent properties of human embryonic stem (ES) cells depend on a dynamic interplay between human ES cells and autologously derived human ES cell fibroblast-like cells (hdFs). Human ES cells and hdFs are uniquely defined by insulin-like growth factor (IGF)- and fibroblast growth factor (FGF)-dependence.
View Article and Find Full Text PDFVoltage-gated Na(+) channels have an essential role in the biophysical properties of nociceptive neurons. Factors that regulate Na(+) channel function are of interest from both pathophysiological and therapeutic perspectives. Increasing evidence indicates that changes in expression or inappropriate modulation of these channels leads to electrical instability of the cell membrane and the inappropriate spontaneous activity that is observed following nerve injury, and that this might contribute to neuropathic pain.
View Article and Find Full Text PDFThe nociceptive C-fibers of the dorsal root ganglion express several sodium channel isoforms that associate with one or more regulatory beta-subunits (beta1-beta4). To determine the effects of individual and combinations of the beta-subunit isoforms, we co-expressed Nav1.8 in combination with these beta-subunits in Xenopus oocytes.
View Article and Find Full Text PDFMammalian cells poorly express rNa(v)1.8 channels. In contrast, rNa(v)1.
View Article and Find Full Text PDFVoltage-gated Na+ channels (VGSC) are transmembrane proteins that are essential for the initiation and propagation of action potentials in neuronal excitability. Because neurons express a mixture of Na+ channel isoforms and protein kinase C (PKC) isozymes, the nature of which channel is being regulated by which PKC isozyme is not known. We showed that DRG VGSC Nav1.
View Article and Find Full Text PDFVoltage-gated Na channels comprise four homologous domains each consisting of six transmembrane segments (S1-S6) linked by loops. The linkers between segments S5 and S6 in each domain (P-loops), denoted as SS1-SS2, form the pore of the channel. It is believed that the SS1 region of the P-loops dips into, while the SS2 region exits out of the membrane.
View Article and Find Full Text PDF