Publications by authors named "Kaurova S"

Primary themes in intergenerational justice are a healthy environment, the perpetuation of Earth's biodiversity, and the sustainable management of the biosphere. However, the current rate of species declines globally, ecosystem collapses driven by accelerating and catastrophic global heating, and a plethora of other threats preclude the ability of habitat protection alone to prevent a cascade of amphibian and other species mass extinctions. Reproduction and advanced biotechnologies, biobanking of germplasm and somatic cells, and conservation breeding programs (RBCs) offer a transformative change in biodiversity management.

View Article and Find Full Text PDF
Article Synopsis
  • - Intergenerational justice emphasizes the importance of preserving Earth's biodiversity, and recent international efforts aim to protect 30% of terrestrial environments to counter climate change impacts.
  • - The review highlights the potential of reproduction biotechnologies, biobanks, and conservation breeding programs (RBCs) in achieving sustainability goals, while discussing their current applications and future possibilities.
  • - A push for enhanced support and collaborations for amphibian RBCs is needed, focusing on regions with the highest amphibian diversity and involving local communities, in order to prevent extinctions amidst geopolitical and cultural challenges.
View Article and Find Full Text PDF

The term 'mitochondrial vesicle' was first used in 2003 in a description of anuran sperm and persists to this day throughout the literature on assisted reproductive technologies (ART) for amphibians. In the present paper, we argue that the term is inappropriate because the widely accepted definition of a 'vesicle' refers to an integral structure with an enclosing lipid bilayer/membrane. Moreover, there are no electron micrographs that show a vesicular structure encapsulating mitochondria on amphibian sperm heads in the literature.

View Article and Find Full Text PDF

We review the use of reproduction technologies (RTs) to support the sustainable management of threatened Caudata (salamanders) and Gymnophiona (caecilian) biodiversity in conservation breeding programs (CBPs) or through biobanking alone. The Caudata include ∼760 species with ∼55% threatened, the Gymnophiona include ∼215 species with an undetermined but substantial number threatened, with 80% of Caudata and 65% of Gymnophiona habitat unprotected. Reproduction technologies include: (1) the exogenous hormonal induction of spermatozoa, eggs, or mating, (2) in vitro fertilisation, (3) intracytoplasmic sperm injection (ICSI), (4) the refrigerated storage of spermatozoa, (5) the cryopreservation of sperm, cell or tissues, (6) cloning, and (7) gonadal tissue or cell transplantation into living amphibians to eventually produce gametes and then individuals.

View Article and Find Full Text PDF

We studied the effect of xenon on the survival rate of the spermatozoa of the common frog Rana temporaria during slow freezing with saturation of the suspension with xenon at a pressure of up to 1.2 bar. The cryoprotective properties of xenon were analyzed in comparison with nitrogen.

View Article and Find Full Text PDF

Any biological material contains dissolved gases that affect physical and biological processes associated with cooling and freezing. However, in the cryobiology literature, little attention has been paid to the effect of gasses on cryopreservation. We studied the influence of helium, neon, krypton, xenon, argon, nitrogen, and sulfur hexafluoride on the survivability of HeLa and L929 cell lines during cryopreservation.

View Article and Find Full Text PDF

Cryopreserved spermatozoa offers a reliable, efficient and cost-effective means to perpetuate the genetic variation of endangered amphibian species in concert with conservation breeding programs. Here we describe successful cryopreservation of testicular spermatozoa of the common frog Rana temporaria , preliminarily stored in the carcasses of decapitated animals at +4°C for 0, 1 and 4 days. The motility, membrane integrity and fertilisation capability of fresh testicular spermatozoa treated with cryoprotective medium supplemented with 15% dimethylformamide (DMF) or 15% dimethylsulfoxide (DMSO) were examined.

View Article and Find Full Text PDF

Current rates of biodiversity loss pose an unprecedented challenge to the conservation community, particularly with amphibians and freshwater fish as the most threatened vertebrates. An increasing number of environmental challenges, including habitat loss, pathogens, and global warming, demand a global response toward the sustainable management of ecosystems and their biodiversity. Conservation Breeding Programs (CBPs) are needed for the sustainable management of amphibian species threatened with extinction.

View Article and Find Full Text PDF

Reproduction technologies (RTs) for the storage and use of amphibian gametes have rapidly developed since the recognition of the amphibian conservation crisis in the late 20th Century. Of these RTs, the refrigerated storage of oocytes and sperm can help to achieve reliable pair-matching when unexpected deaths could lead to critical gaps in studbook programs, and also to enable gamete transport between facilities or when sampled from field populations. Viable sperm can be reliably stored in vitro in testes, as suspensions in refrigerators for weeks and in situ in refrigerated carcasses for days.

View Article and Find Full Text PDF

We review the phylogeny, sperm competition, morphology, physiology, and fertilization environments of the sperm of externally fertilizing fish and amphibians. Increased sperm competition in both fish and anurans generally increases sperm numbers, sperm length, and energy reserves. The difference between the internal osmolarity and iconicity of sperm cells and those of the aquatic medium control the activation, longevity, and velocity of sperm motility.

View Article and Find Full Text PDF

There is a catastrophic decrease in the biodiversity of amphibians coupled with the loss of genetic variation. The perpetuation of amphibian biodiversity demands a multifaceted approach, including the use of reproduction technologies (RTs), to enable efficient reproduction in captivity and to prevent the loss of genetic variation. Reproduction technologies for the storage of amphibian sperm for days to weeks, when refrigerated at 4°C, or for millennia when cryopreserved have recently undergone rapid development.

View Article and Find Full Text PDF

The use of hormonally induced spermatozoa expressed in urine (HISu) is a valuable component of reproduction technologies for amphibians. Five protocols for sampling HISu from the European common frog (Rana temporaria) were compared: (1) pituitary extracts, (2) 0.12 µg g⁻¹ luteinising hormone-releasing hormone analogue (LHRHa), (3) 1.

View Article and Find Full Text PDF

The survival of hundreds of threatened amphibian species is increasingly dependent on conservation breeding programs (CBPs). However, there is an ongoing loss of genetic variation in CBPs for most amphibians, reptiles, birds, and mammals. Low genetic variation results in the failure of CBPs to provide genetically competent individuals for release in supplementation or rehabitation programs.

View Article and Find Full Text PDF

The cryotolerance of totipotent cells from dissociated embryos of amphibian (grass frog Rana temporaria and grey toad Bufo bufo) was studied. Cell integrity and preservation of the cell barrier function were evaluated by fluorescent analysis. It was shown that the best cryopreservation of the cells was achieved by using the cryoprotective agent 10% dimethyl sulfoxide and 10% saccharose.

View Article and Find Full Text PDF