ACS Appl Mater Interfaces
December 2024
All-inorganic lead halide perovskite quantum dots (PQDs) have emerged as highly promising materials for photonic and optoelectronic devices, solar cells, and photocatalysts. However, PQDs encounter instability and color separation issues because of ion diffusion. Current strategies mainly address stability in green CsPbBr PQDs, with limited focus on the red-mixed halide PQDs because of their inferior stability compared with green PQDs.
View Article and Find Full Text PDFBackground: Venous thromboembolism is a major health problem. After thrombus formation, its resolution is essential to re-establish blood flow, which is crucially mediated by infiltrating neutrophils and monocytes in concert with activated platelets and endothelial cells. Thus, we aimed to modulate leukocyte function during thrombus resolution post-thrombus formation by blocking P-selectin/CD62P-mediated cell interactions.
View Article and Find Full Text PDFHigh activity catalysts for hydrogen evolution reaction (HER) play a key role in converting renewable electricity to storable hydrogen fuel. Great effort has been devoted to the search for noble metal free catalysts to make electrolysis viable for practical applications. Here, a non-precious metal oxide/metal catalyst with high intrinsic activity comparable to Pt/C was reported.
View Article and Find Full Text PDFInterleukin-4 (IL-4) and its receptors (IL-4R) promote the proliferation and polarization of macrophages. However, it is unknown if IL-4R also influences monocyte homeostasis and if steady state IL-4 levels are sufficient to affect monocytes. Employing full IL-4 receptor alpha knockout mice (IL-4Rα ) and mice with a myeloid-specific deletion of IL-4Rα (IL-4Rα LysM ), we show that IL-4 acts as a homeostatic factor regulating circulating monocyte numbers.
View Article and Find Full Text PDFChanges in Ca2 influx during proinflammatory stimulation modulates cellular responses, including the subsequent activation of inflammation. Whereas the involvement of Ca has been widely acknowledged, little is known about the role of Na. Ranolazine, a piperazine derivative and established antianginal drug, is known to reduce intracellular Na as well as Ca2 levels.
View Article and Find Full Text PDFMultifunctionality, interference-free signal readout, and quantum effect are important considerations for flexible sensors equipped within a single unit towards further miniaturization. To address these criteria, we present the slotted carbon nanotube (CNT) junction features tunable Fano resonance driven by flexoelectricity, which could serve as an ideal multimodal sensory receptor. Based on extensive ab initio calculations, we find that the effective Fano factor can be used as a temperature-insensitive extrinsic variable for sensing the bending strain, and the Seebeck coefficient can be used as a strain-insensitive intrinsic variable for detecting temperature.
View Article and Find Full Text PDFBackground: Plg-R , a unique transmembrane plasminogen receptor, enhances the activation of plasminogen to plasmin, and localizes the proteolytic activity of plasmin on the cell surface.
Objectives: We investigated the role of Plg-R in adipose function, metabolic homeostasis, and obesity.
Methods: We used adipose tissue (AT) sections from bariatric surgery patients and from high fat diet (HFD)-induced obese mice together with immunofluorescence and real-time polymerase chain reaction to study adipose expression of Plg-R .
Background: Fabry disease is a hereditary genetic defect resulting in reduced activity of the enzyme α-galactosidase-A and the accumulation of globotriaosylceramide (Gb3) in body fluids and cells. Gb3 accumulation was especially reported for the vascular endothelium in several organs.
Methods: Three Fabry disease patients were screened using a micro-RNA screen.
Currently available synthetic small diameter vascular grafts reveal low patency rates due to thrombosis and intimal hyperplasia. Biofunctionalized grafts releasing nitric oxide (NO) in situ may overcome these limitations. In this study, a drug-eluting vascular graft was designed by blending polycaprolactone (PCL) with S-nitroso-human-serum-albumin (S-NO-HSA), a nitric oxide donor with prolonged half-life.
View Article and Find Full Text PDFA magnetic skyrmion is a topologically stable state with potential applications for realizing the next-generation spintronic devices. Here, we demonstrate the real-space observation of skyrmions in Dion-Jacobson phase perovskite, CaNaNbO (CNNO), nanosheets by using optical injection. The CNNO and CNNO nanosheets exhibit weak ferromagnetics, while the CNNO nanosheet is superparamagnetic.
View Article and Find Full Text PDFBackground: Inflammation is a key process during atherosclerotic lesion development and propagation. Recent evidence showed clearly that especially the inhibition of interleukin (IL)-1β reduced atherosclerotic adverse events in human patients. Fatty acid oxidation (FAO) was previously demonstrated to interact with the NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) pathway which is required for mature IL-1β secretion.
View Article and Find Full Text PDFNicorandil, a balanced vasodilator, is used in the second-line therapy of angina pectoris. In this study, we aimed to illuminate the effects of nicorandil on inflammation, apoptosis, and atherosclerotic plaque progression. Twenty-five LDL-R -/- mice were fed a high-fat diet for 14 weeks.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2021
In this work, SnS-SnS heterostructured upright nanosheet frameworks are constructed on FTO substrates, which demonstrate promising photocatalytic performances for the conversion of CO and water to C2 (acetaldehyde) and C3 (acetone) hydrocarbons without H formation. With post annealing in designated atmospheres, the photocatalytic activity of the SnS-SnS heterostructured nanosheet framework is critically enhanced by increasing the fraction of crystalline SnS in nanosheets through partial transformation of the SnS matrix to SnS but not obviously influenced by improving the crystallinity of the SnS matrix. DFT calculations indicate that transformed SnS possesses the CO adsorption sites with significantly lower activation energy for the rate-determining step to drive efficient CO conversion catalysis.
View Article and Find Full Text PDFAn assessment tool to evaluate the degradation of biodegradable materials in a more physiological environment is still needed. Macrophages are critical players in host response, remodeling and degradation. In this study, a cell culture model using monocyte-derived primary macrophages was established to study the degradation, macro-/micro-mechanical behavior and inflammatory behavior of a new designed, biodegradable thermoplastic polyurethane (TPU) scaffold, over an extended period of time in vitro.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
September 2020
Objective: Macrophages are immune cells, capable to remodel the extracellular matrix, which can harbor extracellular DNA incorporated into neutrophil extracellular traps (NETs). To study the breakdown of NETs we studied the capability of macrophage subsets to degrade these structures in vitro and in vivo in a murine thrombosis model. Furthermore, we analyzed human abdominal aortic aneurysm samples in support of our in vitro and in vivo results.
View Article and Find Full Text PDFAims: Tenascin-C (TN-C) is suggested to be detrimental in cardiac remodelling after myocardial infarction (MI). The aim of this study is to reveal the effects of TN-C on extracellular matrix organization and its haemodynamic influence in an experimental mouse model of MI and in myocardial cell culture during hypoxic conditions.
Methods And Results: Myocardial infarction was induced in TN-C knockout (TN-C KO) and wild-type mice.
In this study we look into the interference effect in multi-thread molecular junctions in between carbon-nanotube (CNT) electrodes of assorted edges. From the tube end into the tube bulk of selected CNTs, we investigate surface Green's function and layer-by-layer local density of states (LDOS), and find that both the cross-cut and the angled-cut armchair CNTs exhibit 3-layer-cycled LDOS oscillations. Moreover, the angled-cut armchair CNTs, which possess a zigzag rim at the cut, exhibit not only the oscillations, but also edge state component that decays into the tube bulk.
View Article and Find Full Text PDFBackground: Percutaneous coronary intervention represents the most important treatment modality of coronary artery stenosis. In-stent restenosis (ISR) is still a limitation for the long-term outcome despite the introduction of drug eluting stents. It has been shown that adipokines directly influence vessel wall homeostasis by influencing the function of endothelial cells and arterial smooth muscle cells.
View Article and Find Full Text PDFAs the miniaturization trend of integrated circuit continues, the leakage currents flow through the dielectric films insulating the interconnects become a critical issue. However, quantum transport through the mainstream on-chip interfaces between interconnects and dielectrics has not been addressed from first principles yet. Here, using first-principles calculations based on density functional theory and nonequilibrium Green's function formalism, we investigate the interfacial-dependent leakage currents in the Cu/α-cristobalite/Cu junctions.
View Article and Find Full Text PDFBackground: High soluble suppression of tumorigenicity-2 (sST2) is a marker of poor prognosis in chronic inflammatory conditions. ST2 and its ligand interleukin (IL)-33 are elevated in adipose tissue of obese individuals. We aimed to evaluate circulating sST2 and IL-33 as possible markers of metabolic benefit in morbidly overweight patients after Roux-en-Y gastric bypass (RYGB) bariatric surgery.
View Article and Find Full Text PDFMacrophages are versatile cells that can be polarized by the tissue environment to fulfill required needs. Proinflammatory polarization is associated with increased tissue degradation and propagation of inflammation whereas alternative polarization within a Th2 cytokine environment is associated with wound healing and angiogenesis. To understand if polarization of macrophages can lead to a procoagulant macrophage subset we polarized human monocyte derived macrophages to a proinflammatory and an alternative activation state.
View Article and Find Full Text PDFObjective: Biodegradable materials for in situ vascular tissue engineering could meet the increasing clinical demand for sufficient synthetic small diameter vascular substitutes in aortocoronary bypass and peripheral vascular surgery. The aim of this study was to design a new degradable thermoplastic polycarbonate urethane (dPCU) with improved biocompatibility and optimal biomechanical properties. Electrospun conduits made from dPCU were evaluated in short and long term follow up and compared with expanded polytetrafluoroethylene (ePTFE) controls.
View Article and Find Full Text PDFIn recent years, it is urgent and challenging to fabricate highly sensitive and selective gas sensors for breath analyses. In this work, Sr-doped cubic InO/rhombohedral InO homojunction nanowires (NWs) are synthesized by one-step electrospun technology. The Sr doping alters the cubic phase of pure InO into the rhombohedral phase, which is verified by the high-resolution transmittance electron microscopy, X-ray diffraction, and Raman spectroscopy, and is attributable to the low cohesive energy as calculated by the density functional theory (DFT).
View Article and Find Full Text PDFDeveloping active multifunctional electrocatalysts composed of earth-abundant and cheap elements is an urgent demand in energy conversion applications. This study presents a facile approach for the scalable synthesis of nanostructured cobalt phosphide embedded in carbon nanosheets (CoP NPs/CNSs). The hybrid structures show highly efficient trifunctional electrocatalytic activities toward the oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER) under alkaline condition.
View Article and Find Full Text PDF