Publications by authors named "Kaumaya P"

The inhibition of checkpoint receptors (PD-1, PD-L1, and CTLA-4) with monoclonal antibodies has shown great benefit in clinical trials for treating cancer patients and has become a mainstay approach in modern cancer immunotherapy. However, only a subset of patients respond to checkpoint monoclonal antibody immunotherapy. Therefore, it is urgent to develop new therapeutic strategies against cancer.

View Article and Find Full Text PDF

Importance: Squamous cell carcinoma of the head and neck (HNSCC) is prevalent globally and in the US. Management, particularly after disease recurrence, can be challenging, and exploring additional treatment modalities, such as therapeutic cancer vaccines, may offer an opportunity to improve outcomes in this setting.

Observations: This review provides an overview of the clinical efficacy of different treatment modalities that are currently available for the treatment of recurrent and metastatic HNSCC, including checkpoint inhibitors and targeted therapies, with a detailed summary of the numerous T-cell vaccines that have been studied in the setting of HNSCC, as well as a detailed summary of B-cell therapeutic vaccines being investigated for various malignant tumors.

View Article and Find Full Text PDF

Blockade of checkpoint receptors with monoclonal antibodies against CTLA-4, PD-1 and PD-L1 has shown great clinical success in several cancer subtypes, yielding unprecedented responses albeit a significant number of patients develop resistance and remain refractory. Both PD-1/PD-L1 and HER-2 signaling pathway inhibitors have limited efficacy and exhibits significant toxicities that limit their use. Ongoing clinical studies support the need for rationale combination of immuno-oncology agents to make a significant impact in the lives of cancer patients.

View Article and Find Full Text PDF

Immunotherapy with monoclonal antibodies to checkpoint inhibitors against the PD-1/PD-L1 signaling pathway is a landmark achievement in cancer therapy. Some anti-PD-1 inhibitors such as nivolumab and pembrolizumab have shown clinical success, in a percentage of patients with prolonged survival rates. However, adverse effects accompany these benefits.

View Article and Find Full Text PDF

We developed a PD-1 B-cell epitope vaccine (PD1-Vaxx) to rival nivolumab therapy which has received ethics approvals for a Phase 1 clinical trial in Australia. The US FDA granted Investigational New Drug approval to Imugene Ltd for clinical testing in NSCLC. We demonstrated synergistic vaccine combinations with an HER-2 targeted vaccine (B-Vaxx).

View Article and Find Full Text PDF

Therapeutic blockade of PD-1/PD-L1 signaling with monoclonal antibodies (mAbs) has shown clinical success and activity across a broad set of cancer subtypes. However, monotherapy with PD-1/PD-L1 inhibitors are only effective in a subset of patients and ongoing studies show efficacy of treatment depends on a combinatorial approach. Contrary to mAbs chimeric B-cell cancer vaccines incorporating a "promiscuous" T-cell epitope have the advantage of producing a polyclonal B-cell antibody that can potentially induce memory B- and T-cell responses, while reducing immune evasion and suppression.

View Article and Find Full Text PDF

In light of the numerous US FDA-approved humanized monoclonal antibodies (mAbs) for cancer immunotherapy, it is surprising that the advancement of B-cell epitope vaccines designed to elicit a natural humoral polyclonal antibody response has not gained traction in the immune-oncology landscape. Passive immunotherapy with humanized mAbs (Trastuzumab [Herceptin]; Pertuzumab [Perjeta]) has provided clinical benefit to breast cancer patients, albeit with significant shortcomings including toxicity problems and resistance, high costs, sophisticated therapeutic regimen and long half-life. The role of B-cell humoral immunity in cancer is under appreciated and underdeveloped.

View Article and Find Full Text PDF

Purpose: This first-in-human phase I study (NCT01417546) evaluated the safety profile, optimal immunologic/biological dose (OID/OBD), and immunogenicity of the combination of two peptide B-cell epitope vaccines engineered to represent the trastuzumab- and pertuzumab-binding sites. Although trastuzumab and pertuzumab have been approved for clinical use, patients often develop resistance to these therapies. We have advanced a new paradigm in immunotherapy that focuses on humoral responses based on conformational B-cell epitope vaccines.

View Article and Find Full Text PDF

The aim of this study was to evaluate four different platinated bioconjugates containing a cisplatin (cis-diamminedichloroplatinum [cis-DDP]) fragment and epidermal growth factor receptor (EGFR)-targeting moieties as potential therapeutic agents for the treatment of brain tumors using a human EGFR-expressing transfectant of the F98 rat glioma (F98EGFR) to assess their efficacy. The first two bioconjugates employed the monoclonal antibody cetuximab (C225 or Erbitux(®)) as the targeting moiety, and the second two used genetically engineered EGF peptides. C225-G5-Pt was produced by reacting cis-DDP with a fifth-generation polyamidoamine dendrimer (G5) and then linking it to C225 by means of two heterobifunctional reagents.

View Article and Find Full Text PDF

Despite the promise of targeted therapies, there remains an urgent need for effective treatment for esophageal cancer (EC) and triple-negative breast cancer (TNBC). Current FDA-approved drugs have significant problems of toxicity, safety, selectivity, efficacy and development of resistance. In this manuscript, we demonstrate that rationally designed peptide vaccines/mimics are a viable therapeutic strategy for blocking aberrant molecular signaling pathways with high affinity, specificity, potency and safety.

View Article and Find Full Text PDF

The human epidermal growth factor receptor 3 (HER-3/ErbB3) is a unique member of the human epidermal growth factor family of receptors, because it lacks intrinsic kinase activity and ability to heterodimerize with other members. HER-3 is frequently upregulated in cancers with epidermal growth factor receptor (EGFR/HER-1/ErbB1) or human epidermal growth factor receptor 2 (HER-2/ErBB2) overexpression, and targeting HER-3 may provide a route for overcoming resistance to agents that target EGFR or HER-2. We have previously developed vaccines and peptide mimics for HER-1, HER-2 and vascular endothelial growth factor (VEGF).

View Article and Find Full Text PDF

The insulin-like growth factor-1 receptor (IGF-1R) plays a crucial role in cellular growth, proliferation, transformation, and inhibition of apoptosis. A myriad of human cancer types have been shown to overexpress IGF-1R, including breast and pancreatic adenocarcinoma. IGF-1R signaling interferes with numerous receptor pathways, rendering tumor cells resistant to chemotherapy, anti-hormonal therapy, and epidermal growth factor receptor (EGFR, also known as HER-1) and v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 2, (ERBB2, best known as HER-2) -targeted therapies.

View Article and Find Full Text PDF

There is a recognizable and urgent need to speed the development and application of novel, more efficacious anti-cancer vaccine therapies that inhibit tumor progression and prevent acquisition of tumor resistance. We have created and established a portfolio of validated peptide epitopes against multiple receptor tyrosine kinases and we have identified the most biologically effective combinations of EGFR (HER-1), HER-2, HER-3, VEGF and IGF-1R peptide vaccines/mimics to selectively inhibit multiple receptors and signaling pathways. The strategy is based on the use of chimeric conformational B-cell epitope peptides incorporating "promiscuous" T-cell epitopes that afford the possibility of generating an enduring immune response, eliciting protein-reactive high-affinity anti-peptide antibodies as potential vaccines and peptide mimics that act as antagonists to receptor signaling that drive cancer metastasis.

View Article and Find Full Text PDF

Resistance to the human epidermal growth factor receptor (HER2)-targeted antibody trastuzumab is a major clinical concern in the treatment of HER2-positive metastatic breast cancer. Increased expression or signaling from the insulin-like growth factor-1 receptor (IGF-1R) has been reported to be associated with trastuzumab resistance. However, the specific molecular and biologic mechanisms through which IGF-1R promotes resistance or disease progression remain poorly defined.

View Article and Find Full Text PDF

Epidermal growth factor receptor (EGFR) is a validated target for several cancers including lung, colorectal, and certain subtypes of breast cancer. Cetuximab targets ligand binding of EGFR, but major problems like high cost, short t1/2, toxicity, and emergence of resistance are associated with the drug. Immunization with EGFR B cell epitopes will train the immune system to produce specific Abs that can kill cancer cells.

View Article and Find Full Text PDF

A promising new era of cancer therapeutics with agents that inhibit specific growth stimulatory pathways is finding a new niche in our armamentarium in the war against cancer. Targeted cancer therapeutics, including humanized monoclonal antibodies (mAbs) and tyrosine kinase inhibitors (TKIs), are amongst the major treatment options for cancer today together with cytotoxic chemotherapies. Targeted therapies are more selective for cancer cells and improve the quality of life for cancer patients undergoing treatment.

View Article and Find Full Text PDF

Overexpression of HER-2 and VEGF plays a key role in the development and metastasis of several human cancers. Many FDA-approved therapies targeting both HER-2 (Trastuzumab, Herceptin) and VEGF (Bevacizumab, Avastin) are expensive, have unacceptable toxicities and are often associated with the development of resistance. Here, we evaluate the dual antitumor effects of combining designed particular HER-2 peptide vaccine with VEGF peptide mimics.

View Article and Find Full Text PDF

HER-2 and the vascular endothelial factor receptor (VEGF) represent validated targets for the therapy of multiple tumor types and inhibitors of these receptors have gained increasing importance in the clinic. In this context, novel bioactive agents associated with better therapeutic outcomes and improved safety profile are urgently required. Specifically engineered HER-2- and VEGF-derived peptides in combination with low-dose chemotherapy might provide a substantial impact on tumor metastasis and cancer progression.

View Article and Find Full Text PDF

The ErbB family (HER-1, HER-2, HER-3 and HER-4) of receptor tyrosine kinases has been the focus of cancer immunotherapeutic strategies while antiangiogenic therapies have focused on VEGF and its receptors VEGFR-1 and VEGFR-2. Agents targeting receptor tyrosine kinases in oncology include therapeutic antibodies to receptor tyrosine kinase ligands or the receptors themselves, and small-molecule inhibitors. Many of the US FDA-approved therapies targeting HER-2 and VEGF exhibit unacceptable toxicities, and show problems of efficacy, development of resistance and unacceptable safety profiles that continue to hamper their clinical progress.

View Article and Find Full Text PDF

HER-2 is a member of the EGF receptor family and is overexpressed in 20-30% of breast cancers. HER-2 overexpression causes increased expression of VEGF at both the RNA and protein levels. HER-2 and VEGF are therefore considered good targets for cancer treatment, which has led to the development of two humanized monoclonal antibodies (mAb) pertuzumab and bevacizumab.

View Article and Find Full Text PDF

Angiogenesis, or formation of new blood vessels, is crucial to cancer tumor growth. Tumor growth, progression, and metastasis are critically influenced by the production of the pro-angiogenic vascular endothelial growth factor (VEGF). Promising anti-angiogenic drugs are currently available; however, their susceptibilities to drug resistance and long term toxicity are serious impediments to their use, thus requiring the development of new therapeutic approaches for safe and effective angiogenic inhibitors.

View Article and Find Full Text PDF

Deterioration of diaphragm function is one of the prominent factors that contributes to the susceptibility of serious respiratory infections and development of respiratory failure in patients with Duchenne Muscular Dystrophy (DMD). The NF-κB signaling pathway has been implicated as a contributing factor of dystrophic pathology, making it a potential therapeutic target. Previously, we demonstrated that pharmacological inhibition of NF-κB via a small NEMO Binding Domain (NBD) peptide was beneficial for reducing pathological features of mdx mice.

View Article and Find Full Text PDF