Publications by authors named "Katzir N"

Proteasomes are traditionally considered intracellular complexes that play a critical role in maintaining proteostasis by degrading short-lived regulatory proteins and removing damaged proteins. Remarkably, in addition to these well-studied intracellular roles, accumulating data indicate that proteasomes are also present in extracellular body fluids. Not much is known about the origin, biological role, mode(s) of regulation or mechanisms of extracellular transport of these complexes.

View Article and Find Full Text PDF

Nanoparticles (NPs) have been used in drug delivery therapies, medical diagnostic strategies, and as current Covid-19 vaccine carriers. Many microscope-based imaging systems have been introduced to facilitate detection and visualization of NPs. Unfortunately, none can differentiate the core and the shell of NPs.

View Article and Find Full Text PDF

During drug development, evaluation of drug and its metabolite is an essential process to understand drug activity, stability, toxicity and distribution. Liquid chromatography (LC) coupled with mass spectrometry (MS) has become the standard analytical tool for screening and identifying drug metabolites. Unlike LC/MS approach requiring liquifying the biological samples, we showed that spectral imaging (or spectral microscopy) could provide high-resolution images of doxorubicin (dox) and its metabolite doxorubicinol (dox'ol) in single living cells.

View Article and Find Full Text PDF

The broad variability of (melon, Cucurbitaceae) presents a challenge to conventional classification and organization within the species. To shed further light on the infraspecific relationships within , we compared genotypic and metabolomic similarities among 44 accessions representative of most of the cultivar-groups. Genotyping-by-sequencing (GBS) provided over 20,000 single-nucleotide polymorphisms (SNPs).

View Article and Find Full Text PDF

Melon is an important crop that exhibits broad variation for fruit morphology traits that are the substrate for genetic mapping efforts. In the post-genomic era, the link between genetic maps and physical genome assemblies is key for leveraging QTL mapping results for gene cloning and breeding purposes. Here, using a population of 164 melon recombinant inbred lines (RILs) that were subjected to genotyping-by-sequencing, we constructed and compared high-density sequence- and linkage-based recombination maps that were aligned to the reference melon genome.

View Article and Find Full Text PDF

Carotenoids have various roles in plant physiology. Plant carotenoids are synthesized in plastids and are highly abundant in the chromoplasts of ripening fleshy fruits. Considerable research efforts have been devoted to elucidating mechanisms that regulate carotenoid biosynthesis, yet, little is known about the mechanism that triggers storage capacity, mainly through chromoplast differentiation.

View Article and Find Full Text PDF

Melon is an economically important fruit crop that has been cultivated for thousands of years; however, the genetic basis and history of its domestication still remain largely unknown. Here we report a comprehensive map of the genomic variation in melon derived from the resequencing of 1,175 accessions, which represent the global diversity of the species. Our results suggest that three independent domestication events occurred in melon, two in India and one in Africa.

View Article and Find Full Text PDF

Color and pigment contents are important aspects of fruit quality and consumer acceptance of cucurbit crops. Here, we describe the independent mapping and cloning of a common causative APRR2 gene regulating pigment accumulation in melon and watermelon. We initially show that the APRR2 transcription factor is causative for the qualitative difference between dark and light green rind in both crops.

View Article and Find Full Text PDF

Years of selection for desirable fruit quality traits in dessert watermelon (Citrullus lanatus) has resulted in a narrow genetic base in modern cultivars. Development of novel genomic and genetic resources offers great potential to expand genetic diversity and improve important traits in watermelon. Here, we report a high-quality genome sequence of watermelon cultivar 'Charleston Gray', a principal American dessert watermelon, to complement the existing reference genome from '97103', an East Asian cultivar.

View Article and Find Full Text PDF

The Cucurbitaceae family (cucurbit) includes several economically important crops, such as melon, cucumber, watermelon, pumpkin, squash and gourds. During the past several years, genomic and genetic data have been rapidly accumulated for cucurbits. To store, mine, analyze, integrate and disseminate these large-scale datasets and to provide a central portal for the cucurbit research and breeding community, we have developed the Cucurbit Genomics Database (CuGenDB; http://cucurbitgenomics.

View Article and Find Full Text PDF

Studies on the active pathways and the genes involved in the biosynthesis of L-phenylalanine-derived volatiles in fleshy fruits are sparse. Melon fruit rinds converted stable-isotope labeled L-phe into more than 20 volatiles. Phenylpropanes, phenylpropenes and benzenoids are apparently produced via the well-known phenylpropanoid pathway involving phenylalanine ammonia lyase (PAL) and being (E)-cinnamic acid a key intermediate.

View Article and Find Full Text PDF

Combined quantitative trait loci (QTL) and expression-QTL (eQTL) mapping analysis was performed to identify genetic factors affecting melon (Cucumis melo) fruit quality, by linking genotypic, metabolic and transcriptomic data from a melon recombinant inbred line (RIL) population. RNA sequencing (RNA-Seq) of fruit from 96 RILs yielded a highly saturated collection of > 58 000 single-nucleotide polymorphisms, identifying 6636 recombination events that separated the genome into 3663 genomic bins. Bin-based QTL analysis of 79 RILs and 129 fruit-quality traits affecting taste, aroma and color resulted in the mapping of 241 QTL.

View Article and Find Full Text PDF

Cucumis melo is highly diverse for fruit traits providing wide breeding and genetic research opportunities, including genome-wide association (GWA) analysis. We used a collection of 177 accessions representing the two C. melo subspecies and 11 horticultural groups for detailed characterization of fruit traits variation and evaluation of the potential of GWA for trait mapping in melon.

View Article and Find Full Text PDF

Fruit ripening is divided into climacteric and non-climacteric types depending on the presence or absence of a transient rise in respiration rate and the production of autocatalytic ethylene. Melon is ideal for the study of fruit ripening, as both climacteric and non-climacteric varieties exist. Two introgressions of the non-climacteric accession PI 161375, encompassed in the QTLs ETHQB3.

View Article and Find Full Text PDF
Article Synopsis
  • β-Carotene is an important nutrient that gives color to fruits like melon, and its accumulation in the fruit is influenced by the Orange gene (CmOr) through a yet unspecified mechanism.
  • A specific mutation in this gene (Cmor-lowβ) reduces β-carotene levels by affecting the protein levels and function of phytoene synthase (PSY), while the golden SNP does not change PSY protein levels but enhances β-carotene accumulation by limiting its further metabolism.
  • The study also indicates that CmOr plays a crucial role in the transition from chloroplasts to chromoplasts in fruit development, impacting both carotenoid content and the structure of plastids.
View Article and Find Full Text PDF

The consumption of sweeteners, natural as well as synthetic sugars, is implicated in an array of modern-day health problems. Therefore, natural nonsugar sweeteners are of increasing interest. We identify here the biosynthetic pathway of the sweet triterpenoid glycoside mogroside V, which has a sweetening strength of 250 times that of sucrose and is derived from mature fruit of luo-han-guo (Siraitia grosvenorii, monk fruit).

View Article and Find Full Text PDF

Background: Melon fruit flesh color is primarily controlled by the "golden" single nucleotide polymorhism of the "Orange" gene, CmOr, which dominantly triggers the accumulation of the pro-vitamin A molecule, β-carotene, in the fruit mesocarp. The mechanism by which CmOr operates is not fully understood. To identify cellular and metabolic processes associated with CmOr allelic variation, we compared the transcriptome of bulks of developing fruit of homozygous orange and green fruited F3 families derived from a cross between orange and green fruited parental lines.

View Article and Find Full Text PDF

The flavonoids are phenylpropanoid-derived metabolites that are ubiquitous in plants, playing many roles in growth and development. Recently, we observed that fruit rinds of yellow casaba muskmelons (Cucumis melo 'Inodorous Group') accumulate naringenin chalcone, a yellow flavonoid pigment. With RNA-sequencing analysis of bulked segregants representing the tails of a population segregating for naringenin chalcone accumulation followed by fine mapping and genetic transformation, we identified a Kelch domain-containing F-box protein coding (CmKFB) gene that, when expressed, negatively regulates naringenin chalcone accumulation.

View Article and Find Full Text PDF

Carotenoids are crucial for plant growth and human health. The finding of ORANGE (OR) protein as a pivotal regulator of carotenogenesis offers a unique opportunity to comprehensively understand the regulatory mechanisms of carotenoid accumulation and develop crops with enhanced nutritional quality. Here, we demonstrated that alteration of a single amino acid in a wild-type OR greatly enhanced its ability to promote carotenoid accumulation.

View Article and Find Full Text PDF

Endophytes are microorganisms that mainly colonize vegetative parts, but are also found in reproductive and disseminating organs, and may have beneficial characteristics. To identify microorganisms associated with the agriculturally important family, Cucurbitaceae, endophytes were initially determined in fruits of Cucumis melo Reticulatus Group 'Dulce' by a cultivation-independent approach based on fluorescence in situ hybridization using double labeling of oligonucleotide probes. Alpha-, Beta-, Gammaproteobacteria, Firmicutes and Actinobacteria were localized inside the fruits.

View Article and Find Full Text PDF

Background: Melon (Cucumis melo) fruits exhibit phenotypic diversity in several key quality determinants such as taste, color and aroma. Sucrose, carotenoids and volatiles are recognized as the key compounds shaping the above corresponding traits yet the full network of biochemical events underlying their synthesis have not been comprehensively described. To delineate the cellular processes shaping fruit quality phenotypes, a population of recombinant inbred lines (RIL) was used as a source of phenotypic and genotypic variations.

View Article and Find Full Text PDF

Genotyping arrays are tools for high-throughput genotyping, which is beneficial in constructing saturated genetic maps and therefore high-resolution mapping of complex traits. Since the report of the first cucumber genome draft, genetic maps have been constructed mainly based on simple-sequence repeats (SSRs) or on combinations of SSRs and sequence-related amplified polymorphism (SRAP). In this study, we developed the first cucumber genotyping array consisting of 32,864 single-nucleotide polymorphisms (SNPs).

View Article and Find Full Text PDF

The flesh color of Cucumis melo (melon) is genetically determined, and can be white, light green or orange, with β-carotene being the predominant pigment. We associated carotenoid accumulation in melon fruit flesh with polymorphism within CmOr, a homolog of the cauliflower BoOr gene, and identified CmOr as the previously described gf locus in melon. CmOr was found to co-segregate with fruit flesh color, and presented two haplotypes (alleles) in a broad germplasm collection, one being associated with orange flesh and the second being associated with either white or green flesh.

View Article and Find Full Text PDF