Publications by authors named "Katze M"

The interferon-induced double-stranded RNA-activated protein kinase, PKR, likely contributes to both the antiviral and the antiproliferative effects of interferon. We previously found that influenza virus avoids the translational inhibitory effects of activated PKR by activating a cellular inhibitory protein, termed P58IPK, based on its Mr of 58,000. P58IPK is a member of the tetratricopeptide family of proteins and possesses significant homology to the conserved J region of the DnaJ family of heat shock proteins.

View Article and Find Full Text PDF

Double stranded RNA-dependent protein kinase (PKR) is a double stranded RNA-activated, interferon-induced serine-threonine kinase that participates in both the antiviral and antiproliferative properties of interferon. We previously found that influenza virus inhibited PKR function by recruiting or activating a cellular inhibitor termed P58(IPK). The present study was undertaken to complement our earlier analyses, which demonstrated that P58(IPK) efficiently inhibited PKR autophosphorylation and activity in vitro.

View Article and Find Full Text PDF

Expression of the double-stranded RNA-activated protein kinase (PKR) is induced by interferons, with PKR activity playing a pivotal role in establishing the interferon-induced antiviral and antiproliferative states. PKR is directly regulated by physical association with the specific inhibitor, P58IPK, a cellular protein of the tetratricopeptide repeat (TPR) family, and K3L, the product of the corresponding vaccinia virus gene. P58IPK and K3L repress PKR activation and activity.

View Article and Find Full Text PDF

The 58-kDa inhibitor of the interferon-induced double-stranded RNA-activated protein kinase (PKR) is a cellular protein that is activated during influenza virus infection to down-regulate the activity of PKR. This study was initiated to further our understanding of the inhibitor which, when overproduced, has the capacity to malignantly transform cells. We report here the isolation and characterization of cDNA clones encoding the inhibitor, designated p58, from human HeLa and mouse NIH 3T3 cells.

View Article and Find Full Text PDF

We previously demonstrated that cellular mRNAs are degraded in CD4 positive lymphocytes infected by the human immunodeficiency virus, HIV-1, but not in cells infected by the simian lentivirus, SIV. To begin to define the molecular mechanisms underlying this RNA degradation, we have established an in vitro RNA degradation assay utilizing extracts from both infected and uninfected cells. We found that in vitro transcribed, 32P-radiolabeled actin RNA was degraded in extracts prepared from CEM, CEMx174, and C8166 cells which were infected with HIV-1.

View Article and Find Full Text PDF

The 58-kDa protein, referred to as P58, is a cellular inhibitor of the interferon-induced, double-stranded RNA-activated protein kinase, PKR. The P58 protein inhibits both the autophosphorylation of PKR and the phosphorylation of the PKR natural substrate, the alpha subunit of eukaryotic initiation factor eIF-2. Sequence analysis revealed that P58 is a member of the tetratricopeptide family of proteins.

View Article and Find Full Text PDF

The 58-kDa inhibitor (p58) of the interferon-induced dsRNA-activated protein kinase (PKR) is a cellular protein recruited by the influenza virus to down-regulate the activity of PKR during virus infection. The inhibitor also appears to play a role in the regulation of cellular gene expression in the absence of viral infection and has oncogenic properties when overexpressed. Using fluorescence in situ hybridization, we have mapped the p58 gene (PRKRI) to human chromosome 13 band q32.

View Article and Find Full Text PDF

We have examined the effects of interferon (IFN)-alpha/beta on HIV-1 and SIV replication in CD4+ T-cell lines. To enable us to examine these effects on a single cycle of virus replication, cells were synchronously infected with HIV-1 LAI or SIV mac251. Cell lines included MT4 cells which were responsive to IFN and, as controls, C8166 cells which failed to respond to interferon treatment.

View Article and Find Full Text PDF

The NS1 protein of influenza A virus binds not only to poly(A) and a stem-bulge region in U6 small nuclear RNA (snRNA), but also to double-stranded (ds) RNA. Binding assays with NS1 protein mutants established that the previously identified RNA-binding domain of the NS1 protein is required for binding to ds RNA as well as for binding to poly(A) and U6 snRNA. In addition, dsRNA competed with U6 snRNA for binding to the NS1 protein, consistent with both RNAs sharing the same binding site on the protein.

View Article and Find Full Text PDF

We have shown that sequences contained within the viral mRNA 5'-untranslated region (UTR) played a critical role in directing selective influenza viral mRNA translation. We therefore attempted to identify transacting factors that may regulate viral mRNA translation through interactions with the 5'-UTR and at the same time map the precise sequences to which these factors bind. We can now demonstrate that multiple cellular proteins interact with influenza viral but not cellular 5'-UTRs using gel mobility shift and UV cross-linking analyses.

View Article and Find Full Text PDF

Double-stranded RNA-dependent protein kinase (PKR) is suggested to play an important role in both the antiviral and antiproliferative arms of the interferon response. To gain insights into the molecular mechanisms underlying PKR's growth regulatory properties, we examined the biological and biochemical properties of PKR variants containing either a mutation in catalytic domain II (PKR-M1) or a deletion of RNA binding domain I (PKR-M7) in both reticulocyte translation extracts and in vitro kinase assays with purified reagents and compared these results with those using the same mutants stably expressed in vivo. While wild-type PKR (PKR-WT) efficiently inhibited mRNA translation in a reticulocyte extract, the inactive PKR-M1 had no effect.

View Article and Find Full Text PDF

Recently we reported that introduction of catalytically inactive PKR molecules into NIH 3T3 cells causes malignant transformation and the development of tumors in nude mice. We have proposed that PKR may be a tumor suppressor gene possibly because of its translational inhibitory properties. We have now designed and characterized a number of PKR mutants encoding proteins that retain their catalytic competence but are mutated in their regulatory double-stranded RNA (dsRNA) binding domains (RBDs).

View Article and Find Full Text PDF

Viruses that fail to block the lethal effects of the double-stranded-RNA-activated protein kinase (PKR) may be doomed; why do so many viruses go to so much trouble to downregulate this interferon-induced protein kinase? PKR may regulate cell growth and proliferation in uninfected cells, suggesting that it also participates in the antiproliferative arm of the interferon response.

View Article and Find Full Text PDF

Macaca nemestrina and Macaca fascicularis were inoculated with various doses of a single-cell clone of SIVmne-infected HuT 78 cells (E11S) by both the intravenous and intrarectal routes. Animals inoculated intravenously at each dose seroconverted and virus was isolated from peripheral blood mononuclear cells, but only the high-dose intrarectally exposed macaques became viremic and seroconverted. However, some seronegative, virus isolation negative intrarectally inoculated macaques showed evidence of infection and disease.

View Article and Find Full Text PDF

The interferon-induced RNA-dependent protein kinase (PKR) is considered to play an important role in the cellular defense against viral infection and, in addition, has been suggested to be a tumor suppressor gene because of its growth-suppressive properties. Activation of PKR by double-stranded RNAs leads to the phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF-2 alpha) and a resultant block to protein synthesis initiation. To avoid the consequences of kinase activation, many viruses have developed strategies to down-regulate PKR.

View Article and Find Full Text PDF

PKR is a serine/threonine protein kinase induced by interferon treatment and activated by double-stranded RNAs. As a result of activation, PKR becomes autophosphorylated and catalyzes phosphorylation of the alpha subunit of protein synthesis eukaryotic initiation factor 2 (eIF-2). While studying the regulation of PKR in virus-infected cells, we found that a cellular 58-kDa protein (P58) was recruited by influenza virus to downregulate PKR and thus avoid the kinase's deleterious effects on viral protein synthesis and replication.

View Article and Find Full Text PDF

In cells infected by influenza virus type A, host cell protein synthesis declines rapidly and dramatically, while influenza viral protein synthesis occurs efficiently throughout infection. Previously, we had shown that the selective translation of influenza viral mRNAs in infected cells occurred in a cap-dependent manner and was due at least in part to structures inherent in the mRNAs. Using chimeras containing the noncoding and coding regions of cellular and viral mRNAs, we can now report that the selective translation is mediated by sequences within the 5'-untranslated regions (UTR) of the viral mRNAs.

View Article and Find Full Text PDF

The pigtail macaque (Macaca nemestrina) has a marked sensitivity to infection by simian immunodeficiency virus and human immunodeficiency virus type 2 (HIV-2). On this basis, we previously studied this species' susceptibility to HIV-1 and demonstrated infection in six macaques inoculated with either cell-associated HIV-1 or cell-free virus alone. This report expands upon our initial in vitro and in vivo findings.

View Article and Find Full Text PDF

The genes encoding P68 and P65 (PRKR), the human and mouse interferon-inducible dsRNA-dependent protein kinases, respectively, have been mapped to a single locus on human chromosome 2 (band p21) and on mouse chromosome 17 (band E2). These kinases have been implicated in the antiviral response mediated by interferon since their activation by virus-specific dsRNAs can lead to the inhibition of protein synthesis. Recently we have shown that the dsRNA-dependent kinase also may function as a tumor suppressor gene since defective mutant proteins induced malignant transformation.

View Article and Find Full Text PDF

Activation of the interferon-inducible 68-kDa protein kinase (referred to as P68) by double-stranded RNA catalyzes phosphorylation of the alpha subunit of eukaryotic protein synthesis initiation factor 2. We have analyzed the transient expression of mutant and wild-type kinase molecules in transfected COS cells to examine the effects of the kinase on gene expression in the absence of other interferon-induced gene products. The wild-type P68 kinase was expressed inefficiently whereas a catalytically inactive P68 was expressed at 30- to 40-fold higher levels.

View Article and Find Full Text PDF

Phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF-2 alpha) in Saccharomyces cerevisiae by the GCN2 protein kinase stimulates the translation of GCN4 mRNA. The protein kinases heme-regulated inhibitor of translation (HRI) and double-stranded RNA-dependent eIF-2 alpha protein kinase (dsRNA-PK) inhibit initiation of translation in mammalian cells by phosphorylating Ser-51 of eIF-2 alpha. We show that HRI and dsRNA-PK phosphorylate yeast eIF-2 alpha in vitro and in vivo and functionally substitute for GCN2 protein to stimulate GCN4 translation in yeast.

View Article and Find Full Text PDF

Control of the interferon-induced double-stranded RNA (dsRNA) activated protein kinase (referred to as P68 because of its M(r) of 68,000 in human cells) by animal viruses is essential to avoid decreases in protein synthetic rates during infection. We have previously demonstrated that poliovirus establishes a unique way of regulating the protein kinase, namely by inducing the specific degradation of P68 during infection (T. L.

View Article and Find Full Text PDF